
1

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Chapter 4

SQL

2

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

SQL

• The name is an acronym for Structured Query Language

• Far richer than a query language: both a DML and a DDL

• History:

– First proposal: SEQUEL (IBM Research, 1974)
– First implementation in SQL/DS (IBM, 1981)

• Standardization crucial for its diffusion

– Since 1983, standard de facto

– First standard, 1986, revised in 1989 (SQL-89)

– Second standard, 1992 (SQL-2 or SQL-92)
– Third standard, 199 (SQL-3 or SQL-99)

• Most relational systems support the base functionality of the
standard and offer proprietary extensions

3

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Domains

• Domains specify the content of attributes

• Two categories

– Elementary (predefined by the standard)

– User-defined

4

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Elementary domains, 1

• Character

– Single characters or strings

– Strings may be of variable length

– A Character set different from the default one can be used
(e.g., Latin, Greek, Cyrillic, etc.)

– Syntax:
character [varying] [(Length)]

[character set CharSetName]

– It is possible to use char and varchar, respectively for
character and character varying

5

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Elementary domains, 2

• Bit

– Single boolean values or strings of boolean values (may be
variable in length)

– Syntax:
bit [varying] [(Length)]

• Exact numeric domains

– Exact values, integer or with a fractional part

– Four alternatives:
numeric [(Precision [, Scale])]
decimal [(Precision [, Scale])]
integer

smallint

6

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Elementary domains, 3

• Approximate numeric domains

– Approximate real values

– Based on a floating point representation
float [(Precision)]
double precision

real

7

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Elementary domains, 4

• Temporal instants
date

time [(Precision)] [with time zone]
timestamp [(Precision)] [with time zone]

• Temporal intervals
interval FirstUnitOfTime [to LastUnitOfTime]

– Units of time are divided into two groups:

• year, month
• day, hour, minute, second

8

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Schema definition

• A schema is a collection of objects:

– domains, tables, indexes, assertions, views, privileges

• A schema has a name and an owner (the authorization)

• Syntax:
create schema [SchemaName]

[[authorization] Authorization]
{ SchemaElementDefinition }

9

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Table definition

• An SQL table consists of

– an ordered set of attributes

– a (possibly empty) set of constraints
• Statement create table

– defines a relation schema, creating an empty instance

• Syntax:
create table TableName

(
AttributeName Domain [DefaultValue] [Constraints]
{, AttributeName Domain [DefaultValue] [Constraints] }
[OtherConstraints]
)

10

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Example of create table

create table Employee
(

RegNo character(6) primary key,
FirstName character(20) not null,
Surname character(20) not null,
Dept character (15)

references Department(DeptName)
on delete set null
on update cascade,

Salary numeric(9) default 0,
City character(15),
unique(Surname,FirstName)

)

11

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

User defined domains

• Comparable to the definition of variable types in programming
languages

• A domain is characterized by

– name

– elementary domain
– default value

– set of constraints
• Syntax:

create domain DomainName as ElementaryDomain
[DefaultValue] [Constraints]

• Example:
create domain Mark as smallint default null

12

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Default domain values

• Define the value that the attribute must assume when a value is
not specified during row insertion

• Syntax:
default < GenericValue | user | null >

• GenericValue represents a value compatible with the domain, in
the form of a constant or an expression

• user is the login name of the user who issues the command

13

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Intra-relational constraints

• Constraints are conditions that must be verified by every
database instance

• Intra-relational constraints involve a single relation
– not null (on single attributes)
– unique: permits the definition of keys; syntax:

• for single attributes:
unique, after the domain

• for multiple attributes:
unique(Attribute {, Attribute })

– primary key: defines the primary key (once for each table;
implies not null); syntax like unique

– check: described later

14

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Example of intra-relational constraints

• Each pair of FirstName and Surname uniquely identifies each
element

FirstName character(20) not null,
Surname character(20) not null,
unique(FirstName,Surname)

• Note the difference with the following (stricter) definition:
FirstName character(20) not null unique,
Surname character(20) not null unique,

15

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Inter-relational constraints

• Constraints may take into account several relations
– check: described later

– references and foreign key permit the definition of
referential integrity constraints; syntax:

• for single attributes
references after the domain

• for multiple attributes
foreign key (Attribute {, Attribute })
references …

– It is possible to associate reaction policies to violations of
referential integrity

16

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Reaction policies
for referential integrity constraints

• Reactions operate on the internal table, after changes to the
external table

• Violations may be introduced (1) by updates on the referred
attribute or (2) by row deletions

• Reactions:
– cascade: propagate the change

– set null: nullify the referring attribute

– set default: assign the default value to the referring
attribute

– no action: forbid the change on the external table

• Reactions may depend on the event; syntax:
on < delete | update >
 < cascade | set null | set default | no action >

17

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Example of inter-relational constraint

create table Employee
(

RegNo char(6),
FirstName char(20) not null,
Surname char(20) not null,
Dept char(15),
Salary numeric(9) default 0,
City char(15),
primary key(RegNo),
foreign key(Dept)

references Department(DeptName)
on delete set null
on update cascade,

unique(FirstName,Surname)
)

18

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Schema updates

• Two SQL statements:
– alter (alter domain ..., alter table …)
– drop

drop < schema | domain | table | view | assertion >
ComponentName [restrict | cascade]

• Examples:
– alter table Department
 add column NoOfOffices numeric(4)

– drop table TempTable cascade

19

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Relational catalogues

• The catalog contains the data dictionary, the description of the
data contained in the data base

• It is based on a relational structure (reflexive)

• The SQL-2 standard describes a Definition_Schema (composed
of tables) and an Information_Schema (composed of views)

20

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

SQL as a query language

• SQL expresses queries in declarative way

– queries specify the properties of the result, not the way to
obtain it

• Queries are translated by the query optimizer into the
procedural language internal to the DBMS

• The programmer should focus on readability, not on efficiency

21

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

SQL queries

• SQL queries are expressed by the select statement

• Syntax:
select AttrExpr [[as] Alias] {, AttrExpr [[as] Alias] }
from Table [[as] Alias] {, [[as] Alias] }
[where Condition]

• The three parts of the query are usually called:

– target list
– from clause

– where clause

• The query considers the cartesian product of the tables in the
from clause, considers only the rows that satisfy the condition
in the where clause and for each row evaluates the attribute
expressions in the target list

22

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Example database

EMPLOYEE FirstName Surname Dept Office Salary City
Mary Brown Administration 10 45 London
Charles White Production 20 36 Toulouse
Gus Green Administration 20 40 Oxford
Jackson Neri Distribution 16 45 Dover
Charles Brown Planning 14 80 London
Laurence Chen Planning 7 73 Worthing
Pauline Bradshaw Administration 75 40 Brighton
Alice Jackson Production 20 46 Toulouse

DEPARTMENT DeptName Address City
Administration Bond Street London
Production Rue Victor Hugo Toulouse
Distribution Pond Road Brighton
Planning Bond Street London
Research Sunset Street San José

23

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Simple SQL query

• Find the salaries of employees named Brown:
select Salary as Remuneration
from Employee
where Surname = ‘Brown’

• Result:

Remuneration
45
80

24

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

* in the target list

• Find all the information relating to employees named Brown:
select *
from Employee
where Surname = ‘Brown’

• Result:

FirstName Surname Dept Office Salary City
Mary Brown Administration 10 45 London
Charles Brown Planning 14 80 London

25

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Attribute expressions

• Find the monthly salary of the employees named White:
select Salary / 12 as MonthlySalary
from Employee
where Surname = ‘White’

• Result:

MonthlySalary
3.00

26

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Simple join query

• Find the names of the employees and the cities in which they
work:
select Employee.FirstName, Employee.Surname,
 Department.City
from Employee, Department
where Employee.Dept = Department.DeptName

• Result:
FirstName Surname City
Mary Brown London
Charles White Toulouse
Gus Green London
Jackson Neri Brighton
Charles Brown London
Laurence Chen London
Pauline Bradshaw London
Alice Jackson Toulouse

27

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Table aliases

• Find the names of the employees and the cities in which they
work (using an alias):
select FirstName, Surname, D.City
from Employee, Department D
where Dept = DeptName

• Result:
FirstName Surname City
Mary Brown London
Charles White Toulouse
Gus Green London
Jackson Neri Brighton
Charles Brown London
Laurence Chen London
Pauline Bradshaw London
Alice Jackson Toulouse

28

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Predicate conjunction

• Find the first names and surnames of the employees who work
in office number 20 of the Administration department:

select FirstName, Surname
from Employee
where Office = ‘20’ and
 Dept = ‘Administration’

• Result:

FirstName Surname
Gus Green

29

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Predicate disjunction

• Find the first names and surnames of the employees who work
in either the Administration or the Production department:

select FirstName, Surname
from Employee
where Dept = ‘Administration’ or
 Dept = ‘Production’

• Result:
FirstName Surname
Mary Brown
Charles White
Gus Green
Pauline Bradshaw
Alice Jackson

30

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Complex logical expression

• Find the first names of the employees named Brown who work
in the Administration department or the Production department:

select FirstName
from Employee
where Surname = ‘Brown’ and
 (Dept = ‘Administration’ or
 Dept = ‘Production’)

• Result:

FirstName
Mary

31

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Operator like

• Find the employees with surnames that have ‘r’ as the second
letter and end in ‘n’:

select *
from Employee
where Surname like ‘_r%n’

• Result:

FirstName Surname Dept Office Salary City
Mary Brown Administration 10 45 London
Gus Green Administration 20 40 Oxford
Charles Brown Planning 14 80 London

32

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Management of null values

• Null values may mean that:

– a value is not applicable

– a value is applicable but unknown

– it is unknown if a value is applicable or not
• SQL-89 uses a two-valued logic

– a comparison with null returns FALSE

• SQL-2 uses a three-valued logic

– a comparison with null returns UNKNOWN

• To test for null values:
Attribute is [not] null

33

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Algebraic interpretation of SQL queries

• The generic query:

select T_1.Attribute_11, …, T_h.Attribute_hm
from Table_1 T_1, …, Table_n T_n
where Condition

• corresponds to the relational algebra query:

π T_1.Attribute_11,…,T_h.Attribute_hm (σ Condition (Table_1 ×… × Table_n))

34

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Duplicates

• In relational algebra and calculus the results of queries do not
contain duplicates

• In SQL, tables may have identical rows
• Duplicates can be removed using the keyword distinct

select City select distinct City
from Department from Department

City
London
Toulouse
Brighton
London
San José

City
London
Toulouse
Brighton
San José

35

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Joins in SQL-2

• SQL-2 introduced an alternative syntax for the representation of
joins, representing them explicitly in the from clause:

select AttrExpr [[as] Alias] {, AttrExpr [[as] Alias] }
from Table [[as] Alias]

{ [JoinType] join Table [[as] Alias] on JoinConditions }
[where OtherCondition]

• JoinType can be any of inner, right [outer], left [outer]
or full [outer], permitting the representation of outer joins

• The keyword natural may precede JoinType (rarely
implemented)

36

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Inner join in SQL-2

• Find the names of the employees and the cities in which they
work:

select FirstName, Surname, D.City
from Employee inner join Department as D
 on Dept = DeptName

• Result:
FirstName Surname City
Mary Brown London
Charles White Toulouse
Gus Green London
Jackson Neri Brighton
Charles Brown London
Laurence Chen London
Pauline Bradshaw London
Alice Jackson Toulouse

37

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Example database, drivers and cars

DRIVER FirstName Surname DriverID
Mary Brown VR 2030020Y
Charles White PZ 1012436B
Marco Neri AP 4544442R

AUTOMOBILE CarRegNo Make Model DriverID
ABC 123 BMW 323 VR 2030020Y
DEF 456 BMW Z3 VR 2030020Y
GHI 789 Lancia Delta PZ 1012436B
BBB 421 BMW 316 MI 2020030U

38

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Left join

• Find the drivers with their cars, including the drivers without
cars:

select FirstName, Surname, Driver.DriverID
 CarRegNo, Make, Model
from Driver left join Automobile on
 (Driver.DriverID = Automobile.DriverID)

• Result:

FirstName Surname DriverID CarRegNo Make Model
Mary Brown VR 2030020Y ABC 123 BMW 323
Mary Brown VR 2030020Y DEF 456 BMW Z3
Charles White PZ 1012436B GHI 789 Lancia Delta
Marco Neri AP 4544442R NULL NULL NULL

39

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Full join

• Find all the drivers and all the cars, showing the possible
relationships between them:

select FirstName, Surname, Driver.DriverID
 CarRegNo, Make, Model
from Driver full join Automobile on
 (Driver.DriverID = Automobile.DriverID)

• Result:

FirstName Surname DriverID CarRegNo Make Model
Mary Brown VR 2030020Y ABC 123 BMW 323
Mary Brown VR 2030020Y DEF 456 BMW Z3
Charles White PZ 1012436B GHI 789 Lancia Delta
Marco Neri AP 4544442R NULL NULL NULL

NULL NULL NULL BBB 421 BMW 316

40

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Table variables

• Table aliases may be interpreted as table variables

• They correspond to the renaming operator ρ of relational
algebra

• Find all the same surname (but different first names) of an
employee belonging to the Administration department:

select E1.FirstName, E1.Surname
from Employee E1, Employee E2
where E1.Surname = E2.Surname and
 E1.FirstName <> E2.FirstName and
 E2.Dept = ‘Administration’

• Result:
FirstName Surname
Charles Brown

41

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Ordering

• The order by clause, at the end of the query, orders the rows
of the result; syntax:

order by OrderingAttribute [asc | desc]
 {, OrderingAttribute [asc | desc] }

• Extract the content of the AUTOMOBILE table in descending order
of make and model:
select *
from Automobile
order by Make desc, Model desc

• Result: CarRegNo Make Model DriverID
GHI 789 Lancia Delta PZ 1012436B
DEF 456 BMW Z3 VR 2030020Y
ABC 123 BMW 323 VR 2030020Y
BBB 421 BMW 316 MI 2020030U

42

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Aggregate queries

• Aggregate queries cannot be represented in relational algebra

• The result of an aggregate query depends on the consideration
of sets of rows

• SQL-2 offers five aggregate operators:
– count

– sum

– max

– min

– avg

43

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Operator count

• count returns the number of rows or distinct values; syntax:

count(< * | [distinct | all] AttributeList >)

• Find the number of employees:
select count(*)
from Employee

• Find the number of different values on the attribute Salary for all
the rows in EMPLOYEE:

select count(distinct Salary)
from Employee

• Find the number of rows of EMPLOYEE having a not null value on
the attribute Salary:

select count(all Salary)
from Employee

44

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Sum, average, maximum and minimum

• Syntax:
< sum | max | min | avg > ([distinct | all] AttributeExpr)

• Find the sum of the salaries of the Administration department:

select sum(Salary) as SumSalary
from Employee
where Dept = ‘Administration’

• Result: SumSalary
125

45

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Aggregate queries with join

• Find the maximum salary among the employees who work in a
department based in London:

select max(Salary) as MaxLondonSal
from Employee, Department
where Dept = DeptName and
 Department.City = ‘London’

• Result: MaxLondonSal
80

46

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Aggregate queries and target list

• Incorrect query:
select FirstName, Surname, max(Salary)
from Employee, Department
where Dept = DeptName and
 Department.City = ‘London’

• Whose name? The target list must be homogeneous

• Find the maximum and minimum salaries of all employees:
select max(Salary) as MaxSal,
 min(Salary) as MinSal
from Employee

• Result: MaxSal MinSal
80 36

47

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Group by queries

• Queries may apply aggregate operators to subsets of rows

• Find the sum of salaries of all the employees of the same
department:

select Dept, sum(Salary)as TotSal
from Employee
group by Dept

• Result: Dept TotSal
Administration 125
Distribution 45
Planning 153
Production 82

48

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Semantics of group by queries, 1

• First, the query is executed without group by and without
aggregate operators:

select Dept, Salary
from Employee

Dept Salary
Administration 45
Production 36
Administration 40
Distribution 45
Planning 80
Planning 73
Administration 40
Production 46

49

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Semantics of group by queries, 2

• … then the query result is divided in subsets characterized by
the same values for the attributes appearing as argument of the
group by clause (in this case attribute Dept):

• Finally, the aggregate operator is applied separately to each
subset

Dept Salary
Administration 45
Administration 40
Administration 40
Distribution 45
Planning 80
Planning 73
Production 36
Production 46

Dept TotSal
Administration 125
Distribution 45
Planning 153
Production 82

50

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Group by queries and target list

• Incorrect query:
select Office
from Employee
group by Dept

• Incorrect query:
select DeptName, count(*), D.City
from Employee E join Department D
 on (E.Dept = D.DeptName)
group by DeptName

• Correct query:
select DeptName, count(*), D.City
from Employee E join Department D
 on (E.Dept = D.DeptName)
group by DeptName, D.City

51

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Group predicates

• When conditions are on the result of an aggregate operator, it is
necessary to use the having clause

• Find which departments spend more than 100 on salaries:
select Dept
from Employee
group by Dept
having sum(Salary) > 100

• Result:
Dept
Administration
Planning

52

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

where or having?

• Only predicates containing aggregate operators should appear
in the argument of the having clause

• Find the departments in which the average salary of employees
working in office number 20 is higher than 25:

select Dept
from Employee
where Office = ‘20’
group by Dept
having avg(Salary) > 25

53

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Syntax of an SQL query

• Considering all the described clauses, the syntax is:

select TargetList
from TableList
[where Condition]
[group by GroupingAttributeList]
[having AggregateCondition]
[order by OrderingAttributeList]

54

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Set queries

• A single select cannot represent unions

• Syntax:

SelectSQL { < union | intersect | except > [all] SelectSQL }

• Find the first names and surnames of the employees:
select FirstName as Name
from Employee
union

select Surname
from Employee

• Duplicates are removed (unless the all option is used)

55

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Intersection

• Find the surnames of employees that are also first names:
select FirstName as Name
from Employee
intersect

select Surname
from Employee

• equivalent to:
select E1.FirstName as Name
from Employee E1, Employee E2
where E1.FirstName = E2.Surname

56

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Difference

• Find the surnames of employees that are not also first names:
select FirstName as Name
from Employee
except

select Surname
from Employee

• Can be represented with a nested query (see later)

57

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Nested queries

• In the where clause may appear predicates that:
– compare an attribute (or attribute expression) with the result

of an SQL query; syntax:
ScalarValue Operator < any | all > SelectSQL
• any: the predicate is true if at least one row returned by

SelectSQL satisfies the comparison
• all: the predicate is true if all the rows returned by

SelectSQL satisfy the comparison
– use the existential quantifier on an SQL query; syntax:

exists SelectSQL
• the predicate is true if SelectSQL returns a non-empty

result
• The query appearing in the where clause is called nested query

58

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Simple nested queries, 1

• Find the employees who work in departments in London:
select FirstName, Surname
from Employee
where Dept = any (select DeptName
 from Department
 where City = ‘London’)

• Equivalent to (without nested query):
select FirstName, Surname
from Employee, Department D
where Dept = DeptName and
 D.City = ‘London’

59

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Simple nested queries, 2

• Find the employees of the Planning department, having the
same first name as a member of the Production department:
– without nested queries:
select E1.FirstName, E1.Surname
from Employee E1, Employee E2
where E1. FirstName = E2.FirstName and
 E2.Dept = ‘Production’ and
 E1.Dept = ‘Planning’
– with a nested query:
select FirstName, Surname
from Employee
where Dept = ‘Planning’ and
 FirstName = any
 (select FirstName
 from Employee
 where Dept = ‘Production’)

60

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Negation with nested queries

• Find the departments in which there is no one named Brown:
select DeptName
from Department
where DeptName <> all (select Dept
 from Employee
 where Surname = ‘Brown’)

• Alternatively:
select DeptName
from Department
 except
select Dept
from Employee
where Surname = ‘Brown’

61

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Operators in and not in

• Operator in is a shorthand for = any
select FirstName, Surname
from Employee
where Dept in (select DeptName
 from Department
 where City = ‘London’)

• Operator not in is a shorthand for <> all
select DeptName
from Department
where DeptName not in (select Dept
 from Employee
 where Surname = ‘Brown’)

62

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

max and min with a nested query

• Queries using the aggregate operators max and min can be
expressed with nested queries

• Find the department of the employee earning the highest salary
– with max:
select Dept
from Employee
where Salary in (select max(Salary)
 from Employee

– with a nested query:
select Dept
from Employee
where Salary >= all (select Salary
 from Employee

63

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Complex nested queries, 1

• The nested query may use variables of the external query
(‘transfer of bindings’)

• Semantics: the nested query is evaluated for each row of the
external query

• Find all the homonyms, i.e., persons who have the same first
name and surname, but different tax codes:
select *
from Person P
where exists (select *
 from Person P1
 where P1.FirstName = P.FirstName
 and P1.Surname = P.Surname
 and P1.TaxCode <> P.TaxCode)

64

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Complex nested queries, 2

• Find all the persons who do not have homonyms:
select *
from Person P
where not exists
 (select *
 from Person P1
 where P1.FirstName = P.FirstName
 and P1.Surname = P.Surname
 and P1.TaxCode <> P.TaxCode)

65

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Tuple constructor

• The comparison with the nested query may involve more than
one attribute

• The attributes must be enclosed within a pair of curved brackets
(tuple constructor)

• The previous query can be expressed in this way:
select *
from Person P
where (FirstName,Surname) not in
 (select FirstName, Surname
 from Person P1
 where P1.TaxCode <> P.TaxCode)

66

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Comments on nested queries

• The use of nested queries may produce ‘less declarative’
queries, but they often improve readability

• Complex queries can become very difficult to understand

• The use of variables must respect visibility rules

– a variable can be used only within the query where it is
defined or within a query that is recursively nested in the
query where it is defined

67

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Scope of variables

• Incorrect query:
select *
from Employee
where Dept in
 (select DeptName
 from Department D1
 where DeptName = ‘Production’) or
 Dept in (select DeptName
 from Department D2
 where D2.City = D1.City)

• The query is incorrect because variable D1 is not visible in the
second nested query

68

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Data modification in SQL

• Statements for
– insertion (insert)

– deletion (delete)
– change of attribute values (update)

• All the statements can operate on a set of tuples (set-oriented)

• In the condition it is possible to access other relations

69

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Insertions, 1

• Syntax:
insert into TableName [(AttributeList)]

< values (ListOfValues) | SelectSQL>

• Using values:
insert into Department(DeptName, City)

values(‘Production’,’Toulouse’)

• Using a subquery:
insert into LondonProducts

(select Code, Description
 from Product
 where ProdArea = ‘London’)

70

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Insertions, 2

• The ordering of the attributes (if present) and of values is
meaningful (first value with the first attribute, and so on)

• If AttributeList is omitted, all the relation attributes are
considered, in the order in which they appear in the table
definition

• If AttributeList does not contain all the relation attributes, to the
remaining attributes it is assigned the default value (if defined)
or the null value

71

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Deletions, 1

• Syntax:
delete from TableName [where Condition]

• Remove the Production department:
delete from Department

where DeptName = ‘Production’

• Remove the departments without employees:
delete from Department

where DeptName not in (select Dept
 from Employee)

72

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Deletions, 2

• The delete statement removes from the table all the tuples
that satisfy the condition

• The removal may produce deletions from other tables if a
referential integrity constraint with cascade policy has been
defined

• If the where clause is omitted, delete removes all the tuples

• To remove all the tuples from DEPARTMENT (keeping the table
schema):
delete from Department

• To remove table DEPARTMENT completely (content and schema):
drop table Department cascade

73

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Updates, 1

• Syntax:
update TableName

set Attribute = < Expression | SelectSQL | null | default >
{, Attribute = < Expression | SelectSQL | null | default >}
[where Condition]

• Examples:
update Employee

set Salary = Salary + 5
where RegNo = ‘M2047’

update Employee
set Salary = Salary * 1.1
where Dept = ‘Administration’

74

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Updates, 2

• Since the language is set oriented, the order of the statements is
important

update Employee
set Salary = Salary * 1.1
where Salary <= 30

update Employee
set Salary = Salary * 1.15
where Salary > 30

• If the statements are issued in this order, some employees may
get a double raise

75

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Generic integrity constraints

• The check clause can be used to express arbitrary constraints
during schema definition

• Syntax:
check (Condition)

• Condition is what can appear in a where clause (including
nested queries)

• E.g., the definition of an attribute Superior in the schema of table
EMPLOYEE:

Superior character(6)
check (RegNo like “1%” or
 Dept = (select Dept
 from Employee E
 where E.RegNo = Superior)

76

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Assertions

• Assertions permit the definition of constraints outside of table
definitions

• Useful in many situations (e.g., to express generic inter-
relational constraints)

• An assertion associates a name to a check clause; syntax:
create assertion AssertionName check (Condition)

• There must always be at least one tuple in table EMPLOYEE:
create assertion AlwaysOneEmployee
check (1 <= (select count(*)
 from Employee))

77

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Views, 1

• Syntax:
create view ViewName [(AttributeList)] as SelectSQL

[with [local | cascaded] check option]

create view AdminEmployee
 (RegNo,FirstName,Surname,Salary) as
select RegNo, FirstName, Surname, Salary
from Employee
where Dept = ‘Administration’ and Salary > 10

create view JuniorAdminEmployee as
select *
from AdminEmployee
where Salary < 50
with check option

78

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Views, 2

• SQL views cannot be mutually dependent (no recursion)
• The check option operates when a view content is updated

• Views can be used to formulate complex queries

– Views decompose the problem and produce a more
readable solution

• Views are sometimes necessary to express certain queries:

– queries that combine and nest several aggregate operators

– queries that make a sophisticated use of the union operator

79

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Views and queries, 1

• Find the department with the highest salary expenditure (without
a view):

select Dept
from Employee
group by Dept
having sum(Salary) >= all
 (select sum(Salary)
 from Employee
 group by Dept)

• This solution may not be recognized by all SQL systems

80

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Views and queries, 2

• Find the department with the highest salary expenditure (using a
view):
create view SalaryBudget (Dept,SalaryTotal) as
select Dept, sum(Salary)
from Employee
group by Dept

select Dept
from SalaryBudget
where SalaryTotal = (select max(SalaryTotal)
 from SalaryBudget)

81

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Views and queries

• Find the average number of offices per department:

– Incorrect solution (SQL does not allow a cascade of
aggregate operators):

select avg(count(distinct Office))
from Employee
group by Dept

– Correct solution (using a view):
create view DeptOff(Dept,NoOfOffices) as
select Dept, count(distinct Office)
from Employee
group by Dept

select avg(NoOfOffices)
from DeptOffice

82

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Access control

• Every component of the schema can be protected (tables,
attributes, views, domains, etc.)

• The owner of a resource (the creator) assigns privileges to the
other users

• A predefined user _system represents the database
administrator and has complete access to all the resources

• A privilege is characterized by:
– the resource

– the user who grants the privilege

– the user who receives the privilege

– the action that is allowed on the resource

– whether or not the privilege can be passed on to other users

83

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Types of privilege

• SQL offers six types of privilege
– insert: to insert a new object into the resource

– update: to modify the resource content
– delete: to remove an object from the resource

– select: to access the resource content in a query

– references: to build a referential integrity constraint with
the resource (may limit the ability to modify the resource)

– usage: to use the resource in a schema definition (e.g., a
domain)

84

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

grant and revoke

• To grant a privilege to a user:
grant < Privileges | all privileges > on Resource
to Users [with grant option]

– grant option specifies whether the privilege of
propagating the privilege to other users must be granted

• E.g.:
grant select on Department to Stefano

• To take away privileges:
revoke Privileges on Resource from Users

[restrict | cascade]

85

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Embedded SQL

• Traditional applications often need to “embed” SQL statements
inside the instructions of a procedural programming language
(C, COBOL, etc.)

• Programs with embedded SQL use a precompiler to manage
SQL statements

• Embedded statements are preceded by ‘$’ or ‘EXEC SQL’

• Program variables may be used as parameters in the SQL
statements (preceded by ‘:’)

• select producing a single row and update commands may be
embedded easily

• The SQL environment offers a predefined variable sqlcode
which describes the status of the execution of the SQL
statements (zero if the SQL statement executed successfully)

86

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Cursors

• Fundamental problem: Impedance mismatch

– traditional programming languages manage records one at a
time (tuple-oriented)

– SQL manages sets of tuples (set-oriented)

• Cursors solve this problem
• A cursor:

– accesses the result of a query in a set-oriented way

– returns the tuples to the program one by one

• Syntax of cursor definition:
declare CursorName [scroll] cursor for SelectSQL

[for < read only | update [of Attribute {, Attribute}]>]

87

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Operations on cursors

• To execute the query associated with a cursor:
open CursorName

• To extract one tuple from the query result:
fetch [Position from] CursorName into FetchList

• To free the cursor, discarding the query result:
close CursorName

• To access the current tuple (when a cursor reads a relation, in
order to update it):

current of CursorName (in the where clause)

88

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Example of embedded SQL

void DisplayDepartmentSalaries(char DeptName[])
{
 char FirstName[20], Surname[20];
 long int Salary;

$ declare DeptEmp cursor for
 select FirstName, Surname, Salary
 from Employee
 where Dept = :DeptName;
$ open DeptEmp;
$ fetch DeptEmp into :FirstName, :Surname, :Salary;
 printf(“Department %s\n”,DeptName);
 while (sqlcode == 0)
 {
 printf(“Name: %s %s ”,FirstName,Surname);
 printf(“Salary: %d\n”,Salary);
$ fetch DeptEmp into :FirstName, :Surname, :Salary;
 }
$ close DeptEmp;
}

89

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Dynamic SQL

• When applications do not know at compile-time the SQL
statement to execute, they need dynamic SQL

• Major problem: managing the transfer of parameters between
the program and the SQL environment

• For direct execution:
execute immediate SQLStatement

• For execution preceded by the analysis of the statement:
prepare CommandName from SQLStatement

– followed by:
execute CommandName [into TargetList]
 [using ParameterList]

90

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Procedures

• SQL-2 allows for the definition of procedures, also known as
stored procedures

• Stored procedures are part of the schema
procedure AssignCity(:Dep char(20),
 :City char(20))
update Department
set City = :City
where Name = :Dep

• SQL-2 does not handle the writing of complex procedures

• Most systems offer SQL extensions that permit to write complex
procedures (e.g., Oracle PL/SQL)

91

Database Systems (Atzeni, Ceri, Paraboschi, Torlone)
Chapter 4: SQL

McGraw-Hill and Atzeni, Ceri, Paraboschi, Torlone 1999

Procedure in Oracle PL/SQL
Procedure Debit(ClientAccount char(5),Withdrawal integer) is
 OldAmount integer;
 NewAmount integer;
 Threshold integer;
begin
 select Amount, Overdraft into OldAmount, Threshold
 from BankAccount
 where AccountNo = ClientAccount
 for update of Amount;
 NewAmount := OldAmount - WithDrawal;
 if NewAmount > Threshold
 then update BankAccount
 set Amount = NewAmount
 where AccountNo = ClientAccount;
 else
 insert into OverDraftExceeded
 values(ClientAccount,Withdrawal,sysdate);
 end if;
end Debit;

