
These slides are for use with

Database Systems
Concepts, Languages and Architectures

Paolo Atzeni • Stefano Ceri • Stefano Paraboschi • Riccardo Torlone
© McGraw-Hill 1999

To view these slides on-screen or with a projector use the arrow keys to
move to the next or previous slide. The return or enter key will also take
you to the next slide. Note you can press the ‘escape’ key to reveal the
menu bar and then use the standard Acrobat controls — including the
magnifying glass to zoom in on details.

To print these slides on acetates for projection use the escape key to
reveal the menu and choose ‘print’ from the ‘file’ menu. If the slides are
too large for your printer then select ‘shrink to fit’ in the print dialogue
box.

Press the ‘return’ or ‘enter’ key to continue . . .

Chapter 9

Technology
of a database
server

??????????Click here
for help

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Technology of database servers

• Components:

– Optimizer - selects the data access strategy

– Access Methods Manager - executes the strategy

• RSS (Relational Storage System)
• OM (Object Manager)

– Buffer Manager - manages page accesses

– Reliability Manager - manages faults

– Concurrency Control Manager - manages the interference
due to multi-user data access

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Approach

• Top-Down

• From theory to systems

• Centered on the notion of transaction

• Valid for both relational and object-oriented systems

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Definition of a Transaction

• An elementary unit of work performed by an application, with
specific features for what concerns correctness, robustness and
isolation

• Each transaction is encapsulated within two commands
– begin transaction (bot)
– end transaction (eot)

• Within a transaction, one of the commands below is executed
(exactly once)
– commit work (commit)

– rollback work (abort)

• Transactional System: a system capable of providing the
definition & execution of transactions on behalf of multiple,
concurrent applications

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

(Abstract) Example of Transaction
begin transaction

x := x - 10

y := y + 10
commit work

end transaction

Well-formed Transaction
• A transaction starting with begin transaction, ending with

end transaction, in whose execution just one of the two
commands commit work or rollback work is executed,
and without data management operations processed after the
execution of the commit work or rollback work

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

ACID Properties of Transactions

• ACID is an acronym for:

– Atomicity

– Consistency

– Isolation
– Durability

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Atomicity

• A transaction is an atomic unit of work

• It cannot leave the database in an intermediate state:

– a fault or error prior to commit causes the UNDO of the work
made earlier

– A fault or error after the commit may require the REDO of the
work made earlier, if its effect on the database state is not
guaranteed

• Possible behaviors

– Commit = normality (99.9%)

– Rollback requested by the application = suicide

– Rollback requested by the system = murder

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Consistency

• Consistency amounts to requiring that the transaction does not
violate any integrity constraint

• Integrity constraint verification can be:

– Immediate: during the transaction (the operation causing the
violation is rejected)

– Deferred: at the end of the transaction (if some integrity
constraint is violated, the entire transaction is rejected)

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Isolation

• Isolation requires that any transaction executes independently
from the execution of all other concurrent transactions

– [isolation requires that the concurrent execution of a
collection of transaction yields to the same result as an
arbitrary sequential execution of the same transactions]

Durability (Persistence)
• Durability requires that the effect of a transaction that has

successfully committed be not lost (the effect will “last forever”)

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Transactions and system modules

• Atomicity and durability are guaranteed by the Reliability Control
System

• Isolation is guaranteed by the Concurrency Control System

• Consistency is managed during the normal query execution by
the DBMS System (verification activities are generated by the
DDL Compilers and executed during query processing)

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Concurrency control
• Concurrency: highly desired

• Measured in tps (transactions per second) - typical values are
tens to hundreds to thousands tps

• Typical examples: banks, airline reservation systems

Architecture
• Input-output operations on abstract objects x, y, z

• Each input-output operation reads secondary memory blocks
into buffer pages or writes buffer pages into secondary memory
blocks

• For simplicity: one-to-one mapping from blocks to pages

Problem
• Anomalies due to concurrent execution

Database Systems
Chapter 9: Technology of a database server

© McGraw-Hill 1999

Architecture of the concurrency control system

Scheduler

read(X) write(Y) read(Z)

Database

X
Y

Z

Y
Z

X Z,X

Y Main memory
buffer

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

 Anomaly 1: Update loss

• Consider two identical transactions:
– t 1 : r(x), x = x + 1, w(x)
– t 2 : r(x), x = x + 1, w(x)

• Assume initially x=2; after serial execution x=4
• Consider concurrent execution:

– Transaction t1 Transaction t2
bot
r1(x)
x = x + 1
 bot

r2(x)
 x = x + 1
w1(x)
commit

w2(x)
commit

• One update is lost, final value x=3

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Anomaly 2: Dirty read

• Consider the same two transactions, and the following
execution (note that the first transaction fails):

– Transaction t1 Transaction t2
bot
r1(x)
x = x + 1
w1(x)
 bot

r2(x)
 x = x + 1
abort

w2(x)
commit

• Critical aspect: t2 reads an intermediate state (dirty read)

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Anomaly 3: Inconsistent read

• t1 repeats two reads:
– Transaction t1 Transaction t2

bot
r1(x)
 bot

r2(x)
 x = x + 1

w2(x)
commit

r1(x)
commit

• t1 reads different values for x

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Anomaly 4: Ghost update
• Assume the integrity constraint x + y + z = 1000;

– Transaction t1 Transaction t2
bot
r1(x)

bot
r2(y)

r1(y)
y = y - 100
r2(z)
z = z + 100
w2(y)
w2(z)
commit

r1(z)
s = x + y + z
commit

• In the end, s = 110: the integrity constraint is not satisfied

• t1 sees a ghost update

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Concurrency control theory

• Transaction: sequence of read or write actions

• Each transaction has a unique, system-assigned transaction
identifier

• Each transactions is initiated by the begin transaction
command and terminated by end transaction (omitted)

• Example: t 1 : r1(x) r1(y) w1(x) w1(y)

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Notion of Schedule

• Represents the sequence of input/output operations presented
by concurrent transactions

• Example: S1 : r1(x) r2(z) w1(x) w2(z)

• Simplifying assumption: we consider a commit-projection and
ignore the transactions that produce an abort, removing all their
actions from the schedule

• This assumption is not acceptable in practice and will be
removed

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Foundations of concurrency control

• Objective: refuse the schedules that cause the anomalies

• Scheduler: a system that accepts or rejects the operations
requested by transactions

• Serial schedule: one in which the actions of all the transactions
appear in sequence

S2 : r0(x) r0(y) w0(x) r1(y) r1(x) w1(y) r2(x) r2(y) r2(z) w2(z)

• Serializable schedule: one that produces the same result as
some serial schedule Sj of the same transactions

– Requires a notions of equivalence between schedules

– Progressive notions: view-equivalence, conflict-equivalence,
two-phase locking, timestamp-based

• Observation: a scheduler allows the identification of a more or
less wide-ranging class of acceptable schedules at the cost of
testing for equivalence

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

View-Serializability

• Preliminary definitions:

– ri(x) reads-from wj(x) in a schedule S when wj(x) precedes
ri(x) in S and there is no wk(x) between ri(x) and wj(x) in S

– wi(x) in a schedule S is a final write if it is the last write of the
object x to appear in S

• View-equivalent schedules (Si ≈V Sj): if they possess the same
reads-from relation and the same final writes

• A schedule is called view-serializable if it is view-equivalent to
some serial schedule

• The set of view-serializable schedules is called VSR

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

View-Serializability

• Complexity of view-serializability:

– Deciding on the view-equivalence of two given schedules:
done by a polynomial algorithm

– Deciding on the view serializability of a generic schedule:
NP-complete problem

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Examples of view serializability

• S3 : w0(x) r2(x) r1(x) w2(x) w2(z)
S4 : w0(x) r1(x) r2(x) w2(x) w2(z)
S5 : w0(x) r1(x) w1(x) r2(x) w1(z)
S6 : w0(x) r1(x) w1(x) w1(z) r2(x)

– S3 is view-equivalent to the serial schedule S4 (thus, it is
view-serializable)

– S5 is not view-equivalent to S4, but it is view-equivalent to the
serial schedule S6, and thus this also is view-serializable

• S7 : r1(x) r2(x) w2(x) w1(x)
S8 : r1(x) r2(x) w2(x) r1(x)
S9 : r1(x) r1(y) r2(z) r2(y) w2(y) w2(z) r1(z)
– S7 corresponds to update loss, S8 to inconsistent reads and

S9 to ghost updates; they are not view-serializable

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Conflict-serializability

• Preliminary definition:

– Action ai is in conflict with aj (i≠ j), if both operate on the
same object and at least one of them is a write. Two cases:

• read-write conflicts (rw or wr)

• write-write conflicts (ww).

• Conflict-equivalent schedules (Si ≈C Sj): if they present the same
operations and each pair of operations in conflict is in the same
order in both the schedules

• A schedule is therefore conflict-serializable if there is a serial
schedule that is conflict-equivalent to it. The set of conflict-
serializable schedules is called CSR

• CSR is properly included into VSR

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Testing conflict-serializability

• By means of the conflict graph, with;

– a node for each transaction ti
– an edge from ti to tj if there is at least one conflict between

an action ai and an action aj such that ai precedes aj

• A schedule is in CSR if and only if the graph is acyclic
• Testing for cyclicity of a graph has a linear complexity with

respect to the size of the graph itself

• Conflict serializability is still too laborious in practice, especially
with data distribution

Database Systems
Chapter 9: Technology of a database server

© McGraw-Hill 1999

t1 t2

t5

t3 t4

Conflict graph for a schedule

Database Systems
Chapter 9: Technology of a database server

© McGraw-Hill 1999

S10 w0(x) r1(x) r1(z)w0(z) r2(x) r3(z) w3(z) w1(x)

S11 w0(x) w0(z) r1(x)r2(x) r1(z) w1(x) r3(z) w3(z)

t0

t2t1

t3

A schedule S
10

 conflict-equivalent to a serial
schedule S

11

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Two-phase locking
• Used by almost all commercial DBMSs
• Principle:

– All read operations preceded by r_lock (shared lock) and
followed unlock

– All write operations preceded by w_lock (exclusive lock) and
followed unlock

A transaction following these rules is well formed wrt locking
• When a transaction first reads and then writes an object it can:

– Use a write lock
– Move from shared lock to exclusive lock (lock escalation)

• The lock manager receives these primitives from transactions
and grants resources according to conflict table
– When the lock is granted, the resource is acquired
– At the unlock, the resource is released

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Behavior of the lock manager

• Based on conflict table:
Request Resource state

free r_locked w_locked
r_lock OK / r_locked OK / r_locked NO/ w_locked
w_lock OK / w_locked NO / r_locked NO / w_locked
unlock error OK / depends OK / free

– A counter keeps track of the number of readers; the
resource is released when the counter is set to zero.

• If a lock request is not granted, the requesting transaction is put
in a waiting state

• The waiting ends when the resource is unlocked and becomes
available

• The locks already granted are stored in a lock table, managed
by the lock manager

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Two-phase locking

• Serializability requires in addition that locking is in two phases:
A transaction, after having released a lock, cannot acquire other
locks

• Two phases: growing and shrinking

• If a scheduler use well-formed transaction, conflict-based lock
granting, and two-phases, then it produces the class of 2PL
schedules

• 2PL schedules are serializable and strictly included into CSR
• Example of a schedule that is in CSR and not in 2PL:

S12 : r1(x) w1(x) r2(x) w2(x) r3(y) w1(y)

Database Systems
Chapter 9: Technology of a database server

© McGraw-Hill 1999

t

Resource
requested growing phase

shrinking phase

Representation of allocated resources for 2PL

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Strict two-phase-locking

• We still need to remove the hypothesis of using a commit-
projection

• To do so, turn to strict 2PL (by adding a constraint):
The locks on a transaction can be released only after having
carried out the commit/abort operations

• This version is used by commercial DBMSs; it eliminates the
dirty read anomaly

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Concurrency control based on timestamps

• New mechanism based on timestamp:

– an identifier that defines a total ordering of
temporal events within a system

• Every transaction is assigned a timestamp ts that represents the
time at which the transaction begins

• A schedule is accepted only if it reflects the serial ordering of the
transactions based on the value of the timestamp of each
transaction

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Basic timestamp mechanism
• Each scheduler has a counter RTM(x) and WTM(x) for each object
• Each scheduler receives timestamped read and write requests

upon objects:
– read(x,ts): if ts < WTM(x) then the request is rejected and the

transaction is killed, otherwise the request is accepted and
RTM(x) is set equal to the greater of RTM(x) and ts

– write(x,ts): if ts < WTM(x) or ts < RTM(x) then the request is
rejected and the transaction is killed, otherwise the request
is accepted and WTM(x) is set equal to ts

Under assumption of commit-projection
• The method causes the forced abort of a large number of

transactions
• To remove the commit-projection assumption, must buffer writes

until commit, and this introduces waiting of transactions

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Example of timestamp-based concurrency
control

Request Response New value

read(x,6) ok
read(x,8) ok RTM(x) = 8

read(x,9) ok RTM(x) = 9

write(x,8) no t8 killed

write(x,11) ok WTM(x) = 11

read(x,10) no t10 killed

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Multiversion concurrency control

• Main idea: writes generate new copies, reads make access to
the correct copy

• Writes generate new copies each with a WTM. At any time, N >1
copies of each object x are active, with WTMN(x). There is only
one global RTM(x)

• Mechanism:

– read(x,ts): is always accepted. xk selected for reading such
that: if ts > WTMN(x), then k = N, otherwise k is taken such
that WTMk(x) < ts < WTMk+1(x)

– write(x,ts): if ts < RTM(x) the request is refused, otherwise a
new version of the item of data is added (N increased by
one) with WTMN(x) = ts

• Old copies are discarded when there are no read transactions
interested in their values

Database Systems
Chapter 9: Technology of a database server

© McGraw-Hill 1999

CSR

2PL
TS

VSR

Taxonomy of the classes of schedule accepted by
the methods VSR, CSR, 2PL and TS

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Comparison 2PL vs TS

• In 2PL the transactions are put in waiting. In TS they are killed
and then restarted

• The serialization order in 2PL is imposed by conflicts, while in
TS it is imposed by the timestamps

• The necessity of waiting for the commit of the transaction
causes strict 2PL and buffering of writes in TS

• 2PL can give rise to deadlocks (discussed next)
• Restarting costs more than waiting: 2PL wins!

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Lock management

• Interface:
– r_lock(T, x, errcode, timeout)

– w_lock(T, x, errcode, timeout)

– unlock(T, x)

T: transaction identifier
X: data element
timeout: max wait in queue

• If timeout expires, errcode signals an error, typically the
transaction rolls back and restarts

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Hierarchical locking
• In many real systems locks can be specified at different

granularity, e.g. tables, fragments, tuples, fields. These are
organized in a hierarchy (possibly a directed acyclic graph)

• 5 locking modes:
– 2 are shared and exclusive, renamed as:

• XL: exclusive lock
• SL: shared lock

– 3 are new:
• ISL: intention shared lock
• IXL: intention exclusive lock
• SIXL: shared intention-exclusive lock

• The choice of lock granularity is left to application designers;
– too coarse: many resources are blocked
– too fine: many locks are requested

Database Systems
Chapter 9: Technology of a database server

© McGraw-Hill 1999

DB

Tab 1 Tab 2 Tab n

Fragment 1 Fragment 2 Fragment n

Tuple 1 Tuple 2 Tuple n

Field 1 Field 2 Field n

The hierarchy of resources

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Hierarchical locking protocol

• Locks are requested from the root to descendents in a hierarchy

• Locks are released starting at the node locked and moving up
the tree

• In order to request an SL or ISL on a node, a transaction must
already hold an ISL or IXL lock on the parent node

• In order to request an IXL, XL, or SIXL on a node, a transaction
must already hold an SIXL or IXL lock on the parent node

• The new conflict table is shown in the next slide

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Conflicts in hierarchical locking

Resource state
Request

ISL IXL SL SIXL XL
ISL OK OK OK OK No
IXL OK OK No No No
SL OK No OK No No
SIXL OK No No No No
XL No No No No No

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Lock options offered by SQL2
• Some transactions are defined as read-only (they can’t

request exclusive locks)

• The level of isolation can be set for each transactions
• Serializable guarantees max isolation: keeps predicate

locks so as not to change the content even of aggregate
functions evaluated on data sets

• Repeatable read is equal to strict 2PL (note: repeated
reading of values are the same, but repeated readings of
aggregates over data are not)

• Committed read excludes the reading of intermediate states
(uncommitted data)

• Uncommitted read does no concurrency control at all on read

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Deadlocks

• Created by concurrent transactions, each of which holds and
waits for resources held by others

• Example:

– t1: read(x), write(y)

– t2: read(y), write(x)
– Schedule:

 r_lock1(x), r_lock2(y), read1(x), read2(y) w_lock1(y),
w_lock2(x)

– This is deadlock!

• Deadlock probability grows linearly with number of transactions
and quadratically with the number of lock requests of each
transaction (under suitable uniformity assumptions)

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Deadlock resolution techniques

• A deadlock is a cycle in the wait-for graph which indicates wait
conditions between transactions

– (node=transaction, arc=wait condition).

• Three techniques:
1. Timeout (problem: choice of timeout with trade-offs)
2. Deadlock detection
3. Deadlock prevention

• Deadlock detection: performs the search for cycles in a wait-for
graph

• Deadlock prevention: kills the transactions that could cause a
cycle (thus: it overkills)

– Options for choosing the transaction to kill:

• via pre-emptive policies or non-pre-emptive policies

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Buffer management

• Buffer: a large area of the main memory pre-allocated to the
DBMS and shared among the various transactions

• The buffer is organized in pages, of a size equal or multiple of
the input/output blocks used by the operating system;

– Size of pages: from a few Kbytes to about a hundred Kbytes

– Access times to main memory: six orders of magnitude
faster than access times to secondary memory

• It can possibly store the entire database (we call it a main-
memory resident database)

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Buffer manager organization

• Provides primitives fix, use, unfix, flush and force. Manages
input/output operations in response to these primitives

• The policies of buffer management are similar to those of main
memory management by the operating systems, subject to:

– Principle of data locality: currently referenced data has a
greater probability of being referenced in the future

– Empirical law: only 20% of data is typically accessed by 80%
of applications

Database Systems
Chapter 9: Technology of a database server

© McGraw-Hill 1999

flush

Scheduler

Buffer
Manager

File System

create, delete
extend

open, close

read,
read_seq

Database Management System

write,
write_seq

Database

Y
Z

X

Main
memory
buffer

Y
X Z

fix use unfix force

Architecture of the buffer manager

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Primitives for buffer management
• fix: used to load a page into the buffer, requires read operations

from the secondary memory only when the chosen page is not
already resident in the buffer
– After the operation, the page is loaded and valid, that is,

allocated to an active transaction; a pointer to the page is
returned to the transaction

• use: used by the transaction to gain access to the page
previously loaded in the memory, confirming its allocation in the
buffer and its status as a valid page

• unfix: indicates that the transaction has terminated the use of
the page, which is no longer valid

• force: synchronously transfers a page from the buffer manager
to the secondary memory

• flush: Transfers invalid pages to secondary memory
asynchronously and independently of the active transactions

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Management of the fix primitive

• Search in the buffer for requested page, if found the address is
returned

• Selection of a free page in the buffer, read of page from
secondary memory, the page address is returned

• Selection of a non free page in the buffer, called victim:

– only among non-valid pages (fix can fail when the search
fails)

– also among valid pages allocated to other transactions

• Victim is rewritten to secondary memory invoking the flush
operation, then the page is read from secondary memory and
the page address is returned

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Buffer management policies

• The steal policy allows the buffer manager to select an active
page allocated to another transaction as a victim

• The no-steal policy excludes this possibility

• The force policy requires that all the active pages of a
transaction are written to secondary memory before committing

• The no-force policy entrusts the writing of the pages of a
transaction to the buffer manager

• The no-steal/no-force pair of policies is preferred by the DBMSs

• There is also the possibility of ‘anticipating’ the loading and
unloading times of the pages, by means of pre-fetching and pre-
flushing policies

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Relationship between buffer manager and
file system

• The file system is responsible for knowing the structure of the
secondary memory in directories and the current situation of
secondary memory use. It must identify which blocks are free
and which are allocated to files

• DBMSs use the file system for the following functions:
– The creation (create) and removal (delete) of a file
– The opening (open) and closing (close) of a file.

– read(fileid,block,buffer) for the direct access to a
block of a file which is transcribed to the buffer page.

– read_seq(fileid,f-block,count,f-buffer) for
sequential access to a fixed number (count) of blocks of a
file

– The dual primitives write and write_seq

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Reliability control

• Responsible for executing the transactional commands:
– begin transaction (B)

– commit work (C)
– rollback work (A, for abort)

and the primitives for recovery after malfunctions:

– warm restart and cold restart

• Ensures atomicity and durability

• Uses as main data structure the log:

– A permanent archive which registers the various actions
carried out by the DBMS

– Two metaphors: Arianna’s thread, Hansel and Gretel’s
crumbs of bread

Database Systems
Chapter 9: Technology of a database server

© McGraw-Hill 1999

unfix

 fix use unfix begin commit abort

Buffer
Manager

flush

Database Management System

write,
write_seq

read,
read_seqY

Z

X

Database

Log

X Z
Y

fix use force (for db and log)

Main
memory
buffer

Reliability
control system

Restart
procedure

Warm
restart

Cold
restart

Architecture of the reliability control system

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Stable memory

• A memory that is failure-resistant

• It is an abstraction, in that no memory can have zero probability
of failure (but replication and robust writing protocols can bring
such a probability close to zero)

• A failure of stable memory is assumed as catastrophic and
impossible, at least in this context

• Organized in different ways depending on the criticality of the
application:
– a tape unit

– a pair of devices of different kind (e.g.: a tape and a disk)

– two mirrored disk units

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Log organization
• The log is a sequential file managed by the reliability control system,

written in the stable memory
• The actions carried out by the various transactions are recorded in

the log in chronological order (written sequentially to the top block)
• There are two types of log record

– Transaction records
• begin, B(T)
• insert, I(T,O,AS)
• delete, D(T,O,BS)
• update, U(T,O,BS,AS)
• commit, C(T), or abort, A(T)

– System records
• dump (rare)
• checkpoint (more frequent)

Database Systems
Chapter 9: Technology of a database server

© McGraw-Hill 1999

Dump
CheckpointCheckpoint

t

Transaction record t1

Top of
the log

B U U C

Description of a log

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Undo and redo

• Undo of an action on an object O:
– update, delete: copy the value BS into the object O

– insert: delete the object O

• Redo of an action on an object O:
– insert, update: copy the value AS into the object O

– delete: re-insert the object O

• Idempotence of undo and redo: an arbitrary number of undos
and redos of the same action is equivalent to the carrying out of
such actions only once:

– undo(undo(A)) = undo(A)

– redo(redo(A)) = redo(A)

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Checkpoint

• A checkpoint is carried out periodically, recording active
transactions and updating secondary memory relative to all
completed transactions

– After having initiated a checkpoint, no commit operations are
accepted by the active transactions

– The checkpoint ends by synchronously writing (forcing) a
checkpoint record CK(T1,T2,..Tn), which contains the
identifiers of the active transactions

– In this way effects of the transactions that have carried out a
commit are permanently recorded in the database

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Dump

• A dump is a complete copy of the database, which is normally
created when the system is not operative

– The copy is stored in the stable memory, typically on tape,
and is called backup

– A dump record DUMP in the log signals the presence of a
backup made at a given time and identifies the file or device
where the dump took place

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Transactional rules

The reliability control system must follow two rules:

• WAL rule (write-ahead log): before-state parts of the log records
must be written in the log before carrying out the corresponding
operation on the database

• Commit-Precedence rule: after-state parts of the log records
must be written in the log before carrying out the commit

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Transaction outcome

• The atomic outcome of a transaction is established at the time
when it writes the commit record in the log synchronously, using
the force primitive

– Before this event, a failure is followed by the undo of the
actions, so reconstructing the original state of the database

– After this event, a failure is followed by the redo of the
actions carried out to reconstruct the final state of the
transaction

• abort records can be simply written asynchronously into the
top block of the log

Database Systems
Chapter 9: Technology of a database server

© McGraw-Hill 1999

W(X) W(Y)

W(Y)W(Y)

W(Y)

W(X)

t

t

t

(c)

(a)

(b)

Write in log

Write in database

W(X)

B(T) U(T,X,BS,AS) U(T,Y,BS,AS) C

B(T) U(T,X,BS,AS) U(T,Y,BS,AS) C

B(T) U(T,X,BS,AS) U(T,Y,BS,AS) C

Protocols for the joint writing of log and database

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Optimizations

• Several log records are normally written into the same log page

• Several log records of the same transactions can be forced at
commit time

• Several transactions can commit together by forcing their
commit record with the same operation (group commit)

• Systems can exploit parallelism in writing logs

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Failures in data management

• System failures: software bugs, for example of the operating
system, or interruptions of the functioning of the devices (due,
for example, to loss of power)

– With loss of the contents of the main memory (and thus all
the buffers)

– With no loss of the contents of secondary memory

• Device failures: failures of secondary memory devices (for
example, disk head crashes)
– with loss of secondary memory contents

– with no loss of stable storage (i.e.: of the log)

• Restart protocols

– Warm restart used with system crashes

– Cold restart used with device crashes

Database Systems
Chapter 9: Technology of a database server

© McGraw-Hill 1999

Fail

Stop

Fail

Boot

Recovery

Normal
functionality

End of
recovery

Fail-stop model of the functioning of a DBMS

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Restart process

• Objective: classify transactions as:

– Completed (whose actions were recorded in stable storage)

– Committed but possibly not completed (whose actions must
be redone)

– Not committed (whose actions have to be undone)
• Assumption: no end record in the log

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Warm restart

Four successive phases:

• Trace back the log until the most recent checkpoint record.

• Construct the UNDO set (transactions to be undone) and the
REDO set (transactions to be redone).

• Trace back the log until the first action of the ‘oldest’ transaction
in the two sets, UNDO and REDO, is found, and undo all the
actions of the transactions in the UNDO set

• Trace forward the log and redo all the actions of the transactions
in the REDO set

The protocol guarantees:

• atomicity: all the transactions in progress at the time of failure
leave the database either in the initial state or in the final one

• durability: all pages of transactions in progress are written to
secondary memory

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Cold restart

Divided into three phases.

• During the first phase, the dump is accessed and the damaged
parts are selectively copied from the database. The most recent
dump record in the log is then accessed

• The log is traced forward. The actions on the database and the
commit or abort actions are applied as appropriate to the
damaged parts of the database. The situation preceding the
failure is thus restored

• A warm restart is carried out

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Physical access structures

• Used for the efficient storage and manipulation of data within the
DBMS

• Encoded as access methods, that is, software modules
providing data access and manipulation primitives for each
physical access structure

• Each DBMS has a limited number of types of access methods
available

• Can be coded within applications that do not use a DBMS
• We will consider sequential, hash-based, and index-based data

structures

Database Systems
Chapter 9: Technology of a database server

© McGraw-Hill 1999

fix

Buffer Manager

Recovery Manager

...........

DBMS

Query plans

Scan
mgr

B+
tree
mgr

Sort
mgr

Hash
mgr

use unfix

Access methods manager

Architecture of the access manager

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Organization of tuples within pages

• Each access method has its own page organization, we review
pages of sequential and hash-based methods

• Each page has:

– An initial part (block header) and a final part (block trailer)
containing control information used by the file system

– An initial part (page header) and a final part (page trailer)
containing control information about the access method

– A page dictionary, which contains pointers to each item of
useful elementary data contained in the page

– A useful part, which contains the data. In general, the page
dictionary and the useful data grow as opposing stacks

– A checksum, to verify that the information in it is valid

• Tree structures have a different page organization

Database Systems
Chapter 9: Technology of a database server

© McGraw-Hill 1999

stack stack

tuple tuple tuple

page dictionary useful part of the page
checksum

access method control information

file system control information

t3 t2 t1
*t3*t2*t1

Organization of tuples within pages

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Page manager primitives

• Insertion and update of a tuple (may require a reorganization of
the page if there is sufficient space to manage the extra bytes
introduced)

• Deletion of a tuple (often carried out by marking the tuple as
‘invalid’)

• Access to a field of a particular tuple, identified according to the
offset and to the length of the field itself, after identifying the
tuple by means of its key or its offset

NOTES:
• Some page managers do not allow the separation of a tuple on

more than one page

• When all the tuples have the same size, the page structure
dictionary is simplified

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Sequential structures

• Characterized by a sequential arrangement of tuples in the
secondary memory

• In an entry-sequenced organization, the sequence of the tuples
is dictated by their order of entry

• In an array organization, the tuples are arranged as in an array,
and their positions depend on the values of an index (or
indexes)

• In a sequentially ordered organization, the sequence of the
tuples depends on the value assumed in each tuple by a field
that controls the ordering, known as a key field

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Entry-sequenced sequential structure

• Optimal for the carrying out of sequential reading and writing
operations

• Uses all the blocks available for files and all the spaces within
the blocks

• Primitives:

– Accessed with sequential scan
– Data loading and insertion happen at the end of the file and

in sequence

– Deletes are normally implemented by leaving space unused

– More problems are caused by the updates that increase the
file size

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Array sequential structure

• Possible only when the tuples are of fixed length

• Made of n of adjacent blocks, each block with m of available
slots for tuples

• Each tuple has a numeric index i and is placed in the i-th
position of the array

• Primitives:
– Accessed via read-ind (at a given index value).

– Data loading happen at the end of the file (indices are
obtained simply by increasing a counter)

– Deletions create free slots

– Updates are done on place

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Ordered sequential structure
• Each tuple has a position based on the value of the key field

• Historically, ordered sequential structures were used on
sequential devices (tapes) by batch processes. Data were
located into the main file, modifications were collected in
differential files, and the files were periodically merged. This has
fallen out of use

• The main problems: insertions or updates which increase the
physical space - they require reordering of the tuples already
present

• Options to avoid global reorderings:
– Leaving a certain number of slots free at the time of first

loading. This is followed by ‘local reordering’ operations

– Integrating the sequentially ordered files with an overflow
file, where new tuples are inserted into blocks linked to form
an overflow chain

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Hash-based structures

• Ensure an efficient associative access to data, based on the
value of a key field, composed of an arbitrary number of
attributes of a given table

• A hash-based structure has B blocks (often adjacent)

• The access method makes use of a hash algorithm, which, once
applied to the key, returns a value between zero and B-1

• This value is interpreted as the position of the block in the file,
and used both for reading and writing tuples to the file

• The most efficient technique for queries with equality
predicates, but inefficient for queries with interval predicates

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Features of hash-based structures
• Primitive interface: hash(fileid,Key):Blockid

• The implementation consists of two parts

– folding, transforms the key values so that they become
positive integer values, uniformly distributed over a large
range

– hashing, transforms the positive binary number into a
number between 0 and B - 1

• This technique works better if the file is made larger than
necessary. Let:

– T the number of tuples expected for the file

– F the average number of tuples stored in each page,

then a good choice for B is T/(0.8 x F), using only 80% of the
available space

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Collisions

• Occur when the same block number is returned by the
algorithm starting from two different keys. If each page can
contain a maximum of F tuples, a collision is critical when the
value of F is exceeded

• Solved by adding an overflow chain starting from that page.
They give the additional cost of scanning the chain

• The average length of the overflow chain is tabled as a function
of the ratio T/(F x B) and of the average number F of tuples per
page:

1 2 3 5 10 (F)
.5 0.5 0.177 0.087 0.031 0.005
.6 0.75 0.293 0.158 0.066 0.015
.7 1.167 0.494 0.286 0.136 0.042
.8 2.0 0.903 0.554 0.289 0.110
.9 4.495 2.146 1.377 0.777 0.345
T/(F xB)

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Tree structures

• The most frequently used in relational DBMSs

• Gives associative access (based on a value of a key, consisting
of one or more attributes) without constraints on the physical
location of the tuples

• Note: the primary key of the relational model and the
key of tree structures are different concepts

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Tree structure organization

• Each tree has:

– a root node

– a number of intermediate nodes

– a number of leaf nodes
• The links between the nodes are established by pointers

• Each node coincides with a page or block at the file system and
buffer manager levels. In general, each node has a large
number of descendants (fan out), and therefore the majority of
pages are leaf nodes

• In a balanced tree, the lengths of the paths from the root node to
the leaf nodes are all equal. In this case, the access times to the
information contained in the tree are almost constant (and
optimal)

Database Systems
Chapter 9: Technology of a database server

© McGraw-Hill 1999

Sub-tree that contains
keys K < K1

P0 K1 P1 PjKj KF PF
.

Sub-tree that contains
keys Kj ≤ K< Kj+1

Sub-tree that contains
keys K ≥ KF

Information contained in a node (page) of a B+ tree

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Node contents

• Each intermediate node contains F keys (in lexicographic order)
and F + 1 pointers

• Each key Kj , 1 ≤ j ≤ F, is followed by a pointer Pj; K1 is preceded
by a pointer P0

• Each pointer addresses a sub-tree:

– P0 addresses the sub-tree with the keys less than K1

– PF addresses the sub-tree with keys greater than or equal to
KF

– Pj, 0 < j < F, addresses the sub-tree with keys included in the
interval Kj ≤ K < Kj+1

• The value F + 1 is called the fan-out of the tree

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Search technique

• At each intermediate node:

– if V < K1 follow the pointer P0

– if V ≥ KF follow the pointer PF

– otherwise, follow the pointer Pj such that Kj ≤ V < Kj+1

• The leaf nodes of the tree can be organized in two ways:

– In key-sequenced trees the tuple is contained in the leaves

– In indirect trees leaf nodes contain pointers to the tuples,
that can be allocated by means of any other ‘primary’
mechanism (for example, entry-sequenced, hash, or key-
sequenced)

• In some cases, the index structure is sparse (not complete).
They locate a key value close to the value being sought, then a
sequential search is carried out

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Split and merge operations

• Insertions and deletions done by using the search technique up
to a leaf page

• Insertions are easy when there are free slots in the page

– When the page has no available space, a split operation is
necessary, allocating two leaf nodes in place of one. A split
causes an increment in the number of pointers on the next
(higher) level in the tree and may cause further split

• A deletion can always be carried out in situ
– When a key present in other nodes of the tree is deleted, it is

better to recover the successive key and substitute for it

– When the deletion leaves two adjacent pages underused,
they are concentrated into a single page by a merge
operation. A merge causes a decrement in the number of
pointers on the next (higher) level in the tree and may cause
further merge

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Split and merge operations

• The modification of the value of a key field is treated as the
deletion of its initial value followed by the insertion of a new
value

• The careful use of the split and merge operations makes it
possible to maintain the tree balanced, with an average
occupancy of each node higher than 50%

Database Systems
Chapter 9: Technology of a database server

© McGraw-Hill 1999

b. delete k2: merge

a. insert k3: split

initial situation

k1 k6

k1 k2 k4 k5

k1 k3 k6

k1 k2 k3 k4 k5

k1 k6

k3 k4 k5k1

Split and merge operations on a B+ tree structure

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Difference between B and B+ trees

• B+ trees:

– The leaf nodes are linked by a chain, which connects them
in the order imposed by the key

– Support interval queries efficiently

– Mostly used by relational DBMSs
• B trees:

– There is no sequential connection of leaf nodes

– Intermediate nodes use two pointers for each key value Ki

• one points directly to the block that contains the tuple
corresponding to Ki

• the other points to a sub-tree with keys greater than Ki

and less than Ki+1

Database Systems
Chapter 9: Technology of a database server

© McGraw-Hill 1999

Second level

Root node

First level

Pointers to data (arbitrarily organized)

Peter

Mavis Rick

Mavis Peter Rick TracyBabs David

Example of B+ tree

Database Systems
Chapter 9: Technology of a database server

© McGraw-Hill 1999

k1 k6 k10

k2 k3 k4 k5 k7 k8 k9

t(k2) t(k3) t(k4) t(k5) t(k1) t(k6) t(k10) t(k7) t(k8) t(k9)

Example of a B tree

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Index design

• Primary index: one with key-sequenced structure, supporting a
sequential-type search

– Normally unique (i.e., on the table’s primary key)

• Secondary indexes: many with indirect trees, which can be
either unique or multiple

– Normally on attributes used by query conditions
• Efficiency is normally satisfactory, because the pages that store

the first levels of the tree often remain in the buffer due to other
transactions

• Optimization of the occupied space occurs by means of the
compression of key values, by using:

– prefixes in the high levels of the tree

– suffixes in the low levels of the tree

Database Systems
Chapter 9: Technology of a database server

© McGraw-Hill 1999

Query

Dependencies

Catalogue
Lexical, syntactic and

semantic analysis

Algebraic
optimization

Cost-based
optimization Profiles

Query
plan

Compilation of a query

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Query optimization

• Optimizer: an important and classic module in the architecture of
a databas

• It receives a query written in SQL, produces an access program
is obtained in ‘object’ or ‘internal’ format, which uses the data
structures provided by the system. Steps:

– Lexical, syntactic and semantic analysis, using the data
dictionary

– Translation into an internal, algebraic form
– Algebraic optimization (execution of all the algebraic

transformation that are always convenient, such as the
‘push’ of selections)

– Cost-based optimization

– Code generation using the physical data access methods
provided by the DBMS

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Approaches to query compilation

• Compile and store: the query is compiled once and carried out
many times

– The internal code is stored in the database, together with an
indication of the dependencies of the code on the particular
versions of tables and indexes of the database

– On changes, the compilation of the query is invalidated and
repeated

• Compile and go: immediate execution, no storage

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Relation profiles

• Profiles contain quantitative information about the tables and are
stored in the data dictionary:

– the cardinality (number of tuples) of each table T

– the dimension in bytes of each tuple of T

– the dimension in bytes of each attribute Aj in T
– the number of distinct values of each attribute Aj in T

– the minimum and maximum values of each attribute Aj in T

• Periodically calculated by activating appropriate system
primitives (for example, the update statistics command)

• Used in cost-based optimization for estimating the size of the
intermediate results produced by the query execution plan

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Internal representation of queries

• Internal representation as trees, whose:

– leaves correspond to the physical data structures (tables,
indexes, files)

– intermediate nodes represent data access operations that
are supported on the physical structures

• Include sequential scans, orderings, indexed accesses and
various types of join

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Scan operation

• Performs a sequential access to all the tuples of a table, at the
same time executing various operations of an algebraic or extra-
algebraic nature:

– Projection of a set of attributes

– Selection on a simple predicate (of type: Ai = v)

– Sort (ordering)
– Insertions, deletions, and modifications of the tuples

currently accessed during the scan

• Primitives:
open, next, read, modify, insert, delete, close

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Sort operation

• Various methods for ordering the data contained in the main
memory, typically represented by means of a record array

• DBMSs typically cannot load all data in the buffer; thus, they
separately order and then merge data sets, using the available
buffer space

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Indexed access

• Indexes are created by the database administrator to favor
queries when they include:

– simple predicates (of the type Ai = v)

– interval predicates (of the type v1 ≤ Ai ≤ v2)
These predicates are supported by the index

• With a conjunction of predicates:

– the DBMS chooses the most selective supported predicate
for the primary access, and evaluates the other predicates in
main memory

• With a disjunction of predicates:

– if any of them is not supported a scan is needed

– if all are supported, indexes can be used only with duplicate
elimination

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Join methods

• Joins are the most costly operation for a DBMS

• There are various methods for join evaluation, among them:

– nested-loop, merge-scan and hashed

• The three techniques are based on the combined use of
scanning, hashing, and ordering

Database Systems
Chapter 9: Technology of a database server

© McGraw-Hill 1999

JA JA

a

a ---------------

---------------- a ---------------

a ---------------

Internal tableExternal table
external
scan

internal scan
or indexed
access

Join technique with nested-loop

Database Systems
Chapter 9: Technology of a database server

© McGraw-Hill 1999

 A

a
b
b
c
c
e
f
h

A

a
a
b
c
e
e
g
h

---------------- ---------------

Left table Right table

left
scan

right
scan

Join technique with merge scan

Database Systems
Chapter 9: Technology of a database server

© McGraw-Hill 1999

J

d
e
a
c

j
j

e
m
a
a

j
z

Left table Right table

J

J

hash(a) hash(a)

a

A A

Join technique with hashing

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Cost-based optimization

• An optimization problem, whose decisions are:

– The data access operations to execute (e.g., scan vs index
access)

– The order of operations (e.g., the join order)

– The option to allocate to each operation (for example,
choosing the join method)

– Parallelism and pipelining can improve performances

• Further options appear in selecting a plan within a distributed
context

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Approach to query optimization

• Optimization approach:

– Make use of profiles and of approximate cost formulas

– Construct a decision tree, in which each node corresponds
to the choice; each leaf node corresponds to a specific
execution plan

– Assign to each plan a cost:
Ctotal = CI/Ox nI/O + Ccpu x ncpu

– Choose the one with the lowest cost, based on operations
research (branch and bound)

• The optimizers should obtain ‘good’ solutions whose cost is near
that of the optimal solution

Database Systems
Chapter 9: Technology of a database server

© McGraw-Hill 1999

(S T) R

R S T

(R S(R T

1 1 1 1

2 2 2 2

1 2
T)

21

21
S)

1 2

nested-loop
R internal

nested-loop
R external

merge-scan hash-join

nested-loop
T internal

nested-loop
T external

merge-scan hash-join

strategy 1 strategy 2 strategy 3 strategy 4

Execution options in a conjunctive query

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Physical database design

• The final phase in the process of database design

• Takes as input the logical schema of the database and the
predictions for the application load

• Produces as output the physical schema of the database, made
up of the definitions of the relations and of the physical access
structures used, with the related parameters

• Depends on the characteristics of the chosen DBMS

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Physical design for the relational model

• Most relational DBMS supports only indexes and tuple
clustering

• Physical design can be reduced to the activity of identifying
indexes to be defined on each relation

• The key of a relation is usually involved in selection or join
operations (or both). For this reason, each relation normally
supports a unique index on the primary key

• Other indexes are added so as to support the most common
query predicates

• If the performance is unsatisfactory, we can tune the system by
adding or dropping indexes

• It is useful to check how indexes are used by queries, by using
the show plan command.

Database Systems
Chapter 9: Technology of a database server

McGraw-Hill 1999

Definition of indexes in SQL

• Commands in relational systems for the creation and dropping
of indexes are not part of standard SQL, but their syntax is
rather similar in all DBMSs

• Syntax of the commands for the creation and dropping of an
index:
– create [unique] index IndexName on

TableName(AttributeList)
– drop index IndexName

