
These slides are for use with

Database Systems
Concepts, Languages and Architectures

Paolo Atzeni • Stefano Ceri • Stefano Paraboschi • Riccardo Torlone
© McGraw-Hill 1999

To view these slides on-screen or with a projector use the arrow keys to
move to the next or previous slide. The return or enter key will also take
you to the next slide. Note you can press the ‘escape’ key to reveal the
menu bar and then use the standard Acrobat controls — including the
magnifying glass to zoom in on details.

To print these slides on acetates for projection use the escape key to
reveal the menu and choose ‘print’ from the ‘file’ menu. If the slides are
too large for your printer then select ‘shrink to fit’ in the print dialogue
box.

Press the ‘return’ or ‘enter’ key to continue . . .

Chapter 10

Distributed
architectures

??????????Click here
for help

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

Paradigms for data distribution

• Client-server architecture: separation of the database server
from the client

• Distributed databases: several database servers used by the
same application

• Parallel databases: several data storage devices and
processors operate in parallel for increasing performances

• Replicated databases: data logically representing the same
information and physically stored on different servers

• Data warehouses: servers specialized for the management of
data dedicated to decision support.

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

Separation of functionalities

• OLTP (On-Line Transaction Processing) systems, aimed at
optimized management and reliable transactions on database
servers, specialized for supporting hundreds or even thousands
of transactions per second

• OLAP (On-Line Transaction Processing) systems, aimed at data
analysis, which operate on data warehouse servers, specialized
for data management for decision support

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

Properties of highly interactive systems

• Portability denotes the possibility of transporting programs from
one environment to another (and it is thus a typical property of
compilation time)

– Facilitated by language standards (e.g.: SQL-2, SQL-3)

• Interoperability denotes the ability of interacting between
heterogeneous systems (and it is thus a typical property of
execution time)

– Facilitated by standard data access protocols, including
Database Connectivity (ODBC) and X-Open Distributed
Transaction Processing (DTP)

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

Client-server architecture

• Client-server: a general model of interaction between software
processes, where interacting processes are sub-divided among
clients (which require services) and servers (which offer
services)

• Requires a precise definition of a service interface, which lists
the services offered by the server

• The client process performs an active role, the server process
is reactive

• Normally, a client process requests few services in sequence
from one or more server processes, while a process server
responds to multiple requests from many process clients.

Database Systems
Chapter 10: Distributed architectures

© McGraw-Hill 1999

Client-server architecture

Client

LAN

Client Client

Database

Input
queue

Output
queue

Database server

Server
process

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

Client server architecture and data
management

• In data management, allocation of client and server processes
to distinct computers is now widespread, because:

– The functions of client and server are well identified

– They give rise to a convenient separation of design and
management activities

• SQL offers an ideal programming paradigm for the identification
of the ‘service interface’
– SQL queries are formulated by the client and sent to the

server

– The query results are calculated by the server and returned
to the client

– The standardization, portability and interoperability of SQL
allows the construction of client applications that involve
different server systems

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

Allocation of servers and clients to different
computers

• The computer dedicated to the client must be suitable for
interaction with the user and support productivity tools
(electronic mail, word processing, spreadsheet, Internet access,
and workflow management)

• The server computer must have a large main memory (to
support buffer management) and a high capacity disk (for
storing the entire database)

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

Multi-threaded architecture

• Often, the server that manages such requests is multi-threaded:

– Behaves like a single process that works dynamically on
behalf of different transactions

– Each unit of execution of the server process for a given
transaction is called a thread

• Servers are permanently active processes that control an input
queue for client requests and an output queue for the query
results

• Often, a dispatcher process distributes requests to the servers
and returns the responses to the clients

• When the dispatchers can dynamically define the number of
active server processes as a function of the number of requests
received: we say that a server class is available

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

Two-tier vs three-tier architecture

• Two-tier architecture: the client is both the user interface and the
application manager

– The client is called thick-client, as it supports the application
logic

• Three-tier architecture: a second server is present, known as the
application server, responsible for the management of the
application logic common to many clients

– The client is named thin-client; it is responsible only for the
interface with the final user. Can be deployed using the
browser technology

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

Distributed databases

• A distributed database is a system in which at least one client
interacts with multiple servers for the execution of an application

• We discuss separately:

– How a user can specify distributed queries

– How the server technology is extended in a distributed
database

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

Advantages of distributed databases

• Distributed databases respond to application needs:

– Enterprises are structurally distributed, distributed data
management allows the distribution of data processing and
control to the environment where it is generated and largely
used

• Distributed databases offer greater flexibility, modularity and
resistance to failures

– Distributed systems can be configured by the progressive
addition and modification of components, with great flexibility
and modularity

– Although they are more vulnerable to failures due to their
structural complexity, they support ‘graceful degradation’
(respond to failures with a reduction in performance but
without a total failure)

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

Classification of applications

• Based on the type of DBMS involved:

– Homogeneous DDB: When all the servers have the same
DBMS

– Heterogeneous DDB: When the servers support different
DBMSs

• Based on the network:
– Can use a local area network (LAN)

– Can use a wide area network (WAN)

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

Classification of applications

Network typeType of DBMS

LAN WAN

Homogeneous Data management and
financial applications

Travel management and
financial applications

Heterogeneous Inter-divisional
information systems

Integrated banking and
inter-banking systems

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

Local independence and co-operation

• In a distributed database each server has its own capacity to
manage applications independently

– A distributed database should not maximize the interaction
and the necessity of transmitting data via networks

– On the contrary, the planning of data distribution and
allocation should be done in such a way that applications
should operate independently on a single server

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

Data fragmentation and allocation

• Given a relation R. Its fragmentation consists of determining
fragments Ri by applying algebraic operations to R.

– In horizontal fragmentation, fragments Ri are groups of
tuples having the same schema as R (as after selection on
R). Horizontal fragments are normally disjoint

– In vertical fragmentation, each fragment Ri has a subset of
the schema of R (as after a projection applied on R). Vertical
fragments include the primary key of R

• The fragmentation is correct if it is:
– Complete: each data item of R must be present in one of its

fragments Ri

– Restorable: the content of R must be restorable from its
fragments

• A technique for data organization that allows efficient data
distribution and processing

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

Example

• Consider the relation:

– EMPLOYEE (Empnum, Name, Deptnum, Salary, Taxes)

• Horizontal fragmentation

– EMPLOYEE1 = σEmpnum<=3 EMPLOYEE

– EMPLOYEE2 = σEmpnum>3 EMPLOYEE

• Reconstruction requires a union:

– EMPLOYEE = EMPLOYEE1 U EMPLOYEE2

• Vertical fragmentation:

– EMPLOYEE1 = ΠEmpNum,NameEMPLOYEE

– EMPLOYEE2 = ΠEmpNum,DeptName,Salary,TaxEMPLOYEE

• Reconstruction requires an equi-join on key values (natural join).

– EMPLOYEE = EMPLOYEE1 >< EMPLOYEE2

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

Initial table

EMPLOYEE EmpNum Name DeptName Salary Tax
1 Robert Production 3.7 1.2
2 Greg Administration 3.5 1.1
3 Anne Production 5.3 2.1
4 Charles Marketing 3.5 1.1
5 Alfred Administration 3.7 1.2
6 Paolo Planning 8.3 3.5
7 George Marketing 4.2 1.4

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

Example of horizontal fragmentation

EMPLOYEE1 EmpNum Name DeptName Salary Tax
1 Robert Production 3.7 1.2
2 Greg Administration 3.5 1.1
3 Anne Production 5.3 2.1

EMPLOYEE2 EmpNum Name DeptName Salary Tax
4 Charles Marketing 3.5 1.1
5 Alfred Administration 3.7 1.2
6 Paolo Planning 8.3 3.5
7 George Marketing 4.2 1.4

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

Example of vertical fragmentation

EMPLOYEE1 EmpNum Name
1 Robert
2 Greg
3 Anne
4 Charles
5 Alfred
6 Paolo
7 George

EMPLOYEE2 EmpNum DeptName Salary Tax
1 Production 3.7 1.2
2 Administration 3.5 1.1
3 Production 5.3 2.1
4 Marketing 3.5 1.1
5 Administration 3.7 1.2
6 Planning 8.3 3.5
7 Marketing 4.2 1.4

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

Fragmentation and allocation schemas

• Each fragment Ri corresponds to a different physical file and is
allocated to a different server

• Thus, the relation is present in a virtual mode (like a view), while
the fragments are actually stored

• The allocation schema describes the mapping of relations or
fragments to the servers that store them. This mapping can be:

– non-redundant, when each fragment or relation is allocated
to a single server

– redundant, when at least one fragment or relation is
allocated to more than one server

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

Transparency levels
• There are three significant levels of transparency: transparency

of fragmentation, of allocation and of language

• In absence of transparency, each DBMS accepts its own SQL
‘dialect’: the system is heterogeneous and the DBMSs do not
support a common interoperability standard

• Assume:

– SUPPLIER(SNum,Name,City)
• with two horizontal fragments

– SUPPLIER1 = σCity=‘London’ SUPPLIER

– SUPPLIER2 = σCity=‘Manchester’ SUPPLIER

• and the allocation schema:

– SUPPLIER1@company.London.uk
– SUPPLIER2@company.Manchester1.uk

– SUPPLIER2@company.Manchester2.uk

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

Fragmentation transparency

• On this level, the programmer should not worry about whether or
not the database is distributed or fragmented

• Query:
procedure Query1(:snum,:name);

select Name into :name

 from Supplier

 where SNum = :snum;

end procedure

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

Allocation transparency

• On this level, the programmer should know the structure of the
fragments, but does not have to indicate their allocation

• With replication, the programmer does not have to indicate
which copy is chosen for access (replication transparency)

• Query:
procedure Query2(:snum,:name);

select Name into :name

 from Supplier1

 where SNum = :snum;

if :empty then

 select Name into :name

 from Supplier2

 where SNum = :snum;

end procedure;

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

Language transparency

• On this level the programmer must indicate in the query both the
structure of the fragments and their allocation

• Queries expressed at a higerh level of transparency are
transformed to this level by the distributed query optimizer,
aware of data fragmentation and allocation

• Query:
procedure Query3(:snum,:name);

select Name into :name

 from Supplier1@company.London.uk

 where SNum = :snum;

if :empty then

 select Name into :name

 from Supplier2@company.Manchester1.uk

 where SNum = :snum;

end procedure;

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

Optimizations
• This application can be made more efficient in two ways:

– By using parallelism: instead of submitting the two requests
in sequence, they can be processed in parallel, thus saving
on the global response time

– By using the knowledge on the logical properties of
fragments (but then the programs are not flexible)

procedure Query4(:snum,:name,:city);

case :city of

"London": select Name into :name

 from Supplier1

 where SNum = :snum;

"Manchester": select Name into :name

 from Supplier2

 where SNum = :snum;

end procedure;

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

Classification of transactions
• Remote requests: read-only transactions made up of an arbitrary

number of SQL queries, addressed to a single remote DBMS

– The remote DBMS can only be queried

• Remote transactions made up of any number of SQL commands
(select, insert, delete, update) directed to a single remote DBMS

– Each transaction writes on one DBMS
• Distributed transactions made up of any number of SQL commands

(select, insert, delete, update) directed to an arbitrary number of
remote DBMSs, but each SQL command refers to a single DBMS

– Transactions may update more than one DBMS

– Requires the two-phase commit protocol

• Distributed requests are arbitrary transactions, in which each SQL
command can refer to any DBMS

– Requires a distributed optimizer

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

Typical transaction: fund transfer

• Assume: ACCOUNT (AccNum,Name,Total) with accounts lower
than 10000 allocated on fragment ACCOUNT1 and accounts
above 10000 allocated on fragment ACCOUNT2

• Code:
begin transaction

update Account1

 set Total = Total - 100000

 where AccNum = 3154;

update Account2

 set Total = Total + 100000

 where AccNum = 14878;

commit work;

end transaction

• Comment: It is an unacceptable violation of atomicity that one of
the modifications is executed while the other is not

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

Technology of distributed databases

• Data distribution does not influence consistency and durability

– Consistency of transactions does not depend on data
distribution, because integrity constraints describe only local
properties (a limit of the actual DBMS technology)

– Durability is not a problem that depends on the data
distribution, because each system guarantees local durability
by using local recovery mechanisms (logs, checkpoints, and
dumps)

• Other subsystems require major enhancements:
– Query optimization

– Concurrency control

– Reliability control

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

Distributed query optimization

• Required when a DBMS receives a distributed request; the
DBMS that is queried is responsible for the ‘global optimization’

– It decides on the breakdown of the query into many sub-
queries, each addressed to a specific DBMS

– It builds a strategy (plan) of distributed execution: consisting
of the coordinated execution of various programs on various
DBMSs and in the exchange of data among them

• The cost factors of a distributed query include the quantity of
data transmitted on the network
Ctotal = CI/O x nI/O + Ccpu x ncpu + Ctr x ntr

ntr: the quantity of data transmitted on the network

Ctr: unit cost of transmission

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

Concurrency control
• In a distributed system, a transaction ti can carry out various

sub-transactions tij , where the second subscript denotes the
node of the system on which the sub-transaction works.

t1 : r11(x) w11(x) r12(y) w12(y)

t2 : r22(y) w22(y) r21(x) w21(x)

• The local serializability within the schedulers is not a sufficient
guarantee of serializability. Consider the two schedules at nodes
1 and 2:

S1 : r11(x) w11(x) r21(x) w21(x)

S2 : r22(y) w22(y) r12(y) w12(y)

• These are locally serializable, but their global conflict graph has
a cycle:

– on node 1, t1 precedes t2 and is in conflict with t2
– on node 2, t2 precedes t1 and is in conflict with t1

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

Global serializability

• Global serializability of distributed transactions over the nodes of a
distributed database requires the existence of a unique serial
schedule S equivalent to all the local schedules Si produced at each
node

• The following properties are valid.

– If each scheduler of a distributed database uses the two-phase
locking method on each node and carries out the commit action
when all the sub-transactions have acquired all the resources,
then the resulting schedules are globally conflict-serializable

• This is imposed by the 2-phase commit protocol
– If each distributed transaction acquires a single timestamp and

uses it in all requests to all the schedulers that use concurrency
control based on timestamp, the resulting schedules are globally
serial, based on the order imposed by the timestamps

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

Lamport method for assigning timestamps

• The Lamport method for assigning timestamps reflects the
precedence among events in a distributed system

• A timestamp is a number characterized by two groups of digits

– The least significant digits identify the node at which the
event occurs

– The most significant digits identify the events that happen at
that node. They can be obtained from a local counter, which
is incremented at each event

• Each time two nodes exchange a message, the timestamps
become synchronized:

– The receiving event must have a timestamp greater than the
timestamp of the sending event

– This may require the increasing of the local counter on the
receiving node

Database Systems
Chapter 10: Distributed architectures

© McGraw-Hill 1999

1.1 2.1 7.1 8.1 9.1 10.1 11.1 12.1 13.1 14.1
node 1

1.2 2.2 3.2 4.2 5.2 10.2 11.2 12.2 13.2
node 1

node 1
5.3 6.3 7.3 8.3 11.3 13.3

Example of assignment of timestamps using the
Lamport method

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

Distributed deadlocks

• Distributed deadlocks can be due to circular waiting situations
between two or more nodes

• The time-out method is valid and most used by distributed DBMSs

• Deadlock resolution can be done with an asynchronous and
distributed protocol (implemented in a distributed version of DB2 by
IBM)

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

Distributed deadlock resolution

• Assume that sub-transactions are activated by using a remote
procedure call, that is, a synchronous call to a procedure that is
remotely executed. This model allows for two distinct types of
waiting

– Two sub-transactions of the same transaction can be in
waiting in distinct DBMSs as one waits for the termination of
the other

If t11 activates t12, it waits for the termination of t12

– Two different sub-transactions on the same DBMS can wait
as one blocks a data item to which the other one requires
access

If t11 locks an objects requested by t21, t21 waits for the
termination of t11

Database Systems
Chapter 10: Distributed architectures

© McGraw-Hill 1999

DBMS 1 DBMS 2

t11 t12

t21 t22

waiting
(lock)

waiting
(lock)

activation (rpc)

activation (rpc)

Example of a distributed deadlock

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

Representation of waiting conditions

• The waiting conditions at each DBMS can be characterized
using precedence conditions, where EXT represents executions
at a remote DBMS:

– On DBMS1 we have: EXT < t21 < t11 < EXT

– On DBMS2 we have: EXT < t12 < t22 < EXT

• The general format of waiting condition is summarized using a
wait sequence: EXT < ti < tj < EXT

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

Algorithm
• The algorithm for distributed deadlock detection is periodically

activated on the various DBMSs of the system. When it is activated,
it:

– integrates new wait sequences with the local wait conditions as
described by the lock manager

– analyzes the wait conditions on its DBMS and detects local
deadlocks

– communicates the wait sequences to other instances of the same
algorithm

• To avoid the situation in which the same deadlock is discovered more
than once, the algorithm sends wait sequences:

– ‘ahead’, towards the DBMS which has received the remote
procedure call

– only if, for example, i > j where i and j are the identifiers of the
transactions

Database Systems
Chapter 10: Distributed architectures

© McGraw-Hill 1999

Example of a distributed deadlock detection

DBMS 1 DBMS 2 DBMS 3

t1

t3

E

E

E

E

t2

t3

a. initial situation

E

E

t1

t2

E t1

t2

t3 E

E

b. first pass of the algorithm

DBMS 2

DBMS 3

c. second pass of the algorithm

E

E

t2

t3

E

E

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

Failures in distributed systems
• A distributed system is subject to failures, message losses, or

network partitioning

• Node failures may occur on any node of the system and be soft
or hard, as discussed before

• Message losses leave the execution of a protocol in an
uncertain situation

– Each protocol message (msg) is followed by an
acknowledgement message (ack)

– The loss of either one leaves the sender uncertain about
whether the message has been received

• Network partitioning. This is a failure of the communication links
of the computer network which divides it into two sub-networks
that have no communication between each other

– A transaction can be simultaneously active in more than one
sub-network

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

Two-phase commit protocol

• Commit protocols allow a transaction to reach the correct commit or
abort decision at all the nodes that participate in a transaction

• The two-phase commit protocol is similar in essence to a marriage, in
that the decision of two parties is received and registered by a third
party, who ratifies the marriage

– The servers – who represent the participants to the marriage – are
called resource managers (RM)

– The celebrant (or coordinator) is allocated to a process, called the
transaction manager (TM)

• It takes place by means of a rapid exchange of messages between
TM and RM and writing of records into their logs. The TM can use:

– broadcast mechanisms (transmission of the same message to
many nodes, collecting responses arriving from various nodes)

– serial communication with each of the RMs in turn

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

New log records

• Records of TM
– The prepare record contains the identity of all the RM

processes (that is, their identifiers of nodes and processes)
– The global commit or global abort record describes

the global decision. When the TM writes in its log the
global commit or global abort record, it reaches the
final decision

– The complete record is written at the end of the two-phase
commit protocol

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

New log records

• Records of RM
– The ready record indicates the irrevocable availability to

participate in the two-phase commit protocol, thereby
contributing to a decision to commit. Can be written only
when the RM is “recoverable”, i.e., possesses locks on all
resources that need to be written. The identifier (process
identifier and node identifier) of the TM is also written on this
record

– In addition, begin, insert, delete, and update records
are written as in centralized servers

• At any time an RM can autonomously abort a sub-transaction,
by undoing the effects, without participating to the two-phase
commit protocol

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

First phase of the basic protocol
• The TM writes the prepare record in its log and sends a

prepare message to all the RMs. Sets a timeout indicating the
maximum time allocated to the completion of the first phase

• The recoverable RMs write on their own logs the ready record
and transmit to the TM a ready message, which indicates the
positive choice of commit participation

• The non-recoverable RMs send a not-ready message and
end the protocol

• The TM collects the reply messages from the RMs
– If it receives a positive message from all the RMs, it writes a
global commit record on its log

– If one or more negative messages are received or the time-
out expires without the TM receiving all the messages, it
writes a global abort record on its log

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

Second phase of the basic protocol

• The TM transmits its global decision to the RMs. It then sets a
second time-out

• The RMs that are ready receive the decision message, write the
commit or abort record on their own logs, and send an
acknowledgement to the TM. Then they implement the commit
or abort by writing the pages to the database as discussed
before

• The TM collects all the ack messages from the RMs involved in
the second phase. If the time-out expires it sets another time-out
and repeats the transmission to all the RMs from which it has
not received an ack

• When all the acks have arrived, the TM writes the complete
record on its log

Database Systems
Chapter 10: Distributed architectures

© McGraw-Hill 1999

Prepare

timeout 1

Global Decision

timeout 2

Complete

prepare
msg

Ready

ready
msg

decision
msg

ack
msg

Local Decision

Window of uncertainty

TM

RM

Two-phase commit protocol

Database Systems
Chapter 10: Distributed architectures

© McGraw-Hill 1999

Two-phase commit protocol in the context of a
transaction

exec done

2pc done

Client

TM

RM

Begin Update Update Delete

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

Blocking, uncertainty, recovery protocols

• An RM in a ready state loses its autonomy and awaits the
decision of the TM. A failure of the TM leaves the RM in an
uncertain state. The resources acquired by using locks are
blocked

• The interval between the writing on the RM’s log of the ready
record and the writing of the commit or abort record is called
the window of uncertainty. The protocol is designed to keep this
interval to a minimum

• Recovery protocols are performed by the TM or RM after
failures; they recover a final state which depends on the global
decision of the TM

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

Recovery of participants

• Performed by the warm restart protocol. Depends on the last
record written in the log:
– when it is an action or abort record, the actions are

undone; when it is a commit, the actions are redone; in both
cases, the failure has occurred before starting the commit
protocol

– when the last record written in the log is a ready, the failure
has occurred during the two-phase commit. The participant
is in doubt about the result of the transaction

• During the warm restart protocol, the identifier of the
transactions in doubt are collected in the ready set. For each of
them the final transaction outcome must be requested to the TM

• This can happen as a result of a direct (remote recovery)
request from the RM or as a repetition of the second phase of
the protocol

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

Recovery of the coordinator
• When the last record in the log is a prepare, the failure of the

TM might have placed some RMs in a blocked situation. Two
recovery options:
– Write global abort on the log, and then carry out the

second phase of the protocol

– Repeat the first phase, trying to arrive to a global commit

• When the last record in the log is a global decision, some RMs
may have been correctly informed of the decision and others
may have been left in a blocked state. The TM must repeat the
second phase

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

Message loss and network partitioning
• The loss of a prepare or ready messages are not

distinguishable by the TM. In both cases, the time-out of the first
phase expires and a global abort decision is made

• The loss of a decision or ack message are also
indistinguishable. In both cases, the time-out of the second
phase expires and the second phase is repeated

• A network partitioning does not cause further problems, in that
the transaction will be successful only if the TM and all the RMs
belong to the same partition

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

Presumed abort protocol

• The presumed abort protocol is used by most DBMSs

• Based on the following rule:

– when a TM receives a remote recovery request from an in-
doubt RM and it does not know the outcome of that
transaction, the TM returns a global abort decision as default

• As a consequence, the force of prepare and global abort
records can be avoided, because in the case of loss of these
records the default behavior gives an identical recovery

• Furthermore, the complete record is not critical for the
algorithm, so it needs not be forced; in some systems, it is
omitted. In conclusion the records to be forced are ready,
global commit and commit

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

Read-only optimization

• When a participant is found to have carried out only read
operations (no write operations)

• It responds read-only to the prepare message and
suspends the execution of the protocol

• The coordinator ignores read-only participants in the second
phase of the protocol

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

Four-phase commit protocol

• Created by Tandem, a provider of hardware-software solutions
for data management based on the use of replicated resources
to obtain reliability

• The TM process is replicated by a backup process, located on a
different node. At each phase of the protocol, the TM first
informs the backup of its decisions and then communicates with
the RMs

• The backup can replace the TM in case of failure

• When a backup becomes TM, it first activates another backup,
to which it communicates the information about its state, and
then continues the execution of the transaction

Database Systems
Chapter 10: Distributed architectures

© McGraw-Hill 1999

P

Prepare Global Commit Complete

coordinator (TM)

backup

GC

CommitReady

participant (RM)

Four-phase commit protocol

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

Three-phase commit protocol
• The basic idea is to introduce a third pre-commit phase in the

standard protocol. If the TM fails, a participant can be elected as
new TM and decide the result of the transaction by looking at its
log
– If the new TM finds ready as last record, no other

participants in the protocol can have gone beyond the pre-
commit condition, and thus can make the decision to abort

– If the new TM finds pre-commit as last record, it knows
that the other participants are at least in the ready state, and
thus can make the decision to commit

• The three-phase commit protocol has serious inconveniences
and has not been successfully implemented:
– It lengthens the window of uncertainty

– It is not resilient to network partitioning, unless with
additional quorum mechanisms

Database Systems
Chapter 10: Distributed architectures

© McGraw-Hill 1999

Prepare Pre-Commit Global Commit Complete

Local CommitReady Pre-Commit

Three-phase commit protocol

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

Interoperability
• Interoperability is the main problem in the development of

heterogeneous applications for distributed databases
• It requires the availability of functions of adaptability and

conversion, which make it possible to exchange information
between systems, networks and applications, even when
heterogeneous

• Interoperability is made possible by means of standard protocols
such as FTP, SMTP/MIME, and so on

• With reference to databases, interoperability is guaranteed by
the adoption of suitable standards

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

Open Database Connectivity (ODBC)

• It is an application interface proposed by Microsoft in 1991 for
the construction of heterogeneous database applications,
supported by most relational products

• The language supported by ODBC is a restricted SQL,
characterized by a minimal set of instructions

• Applications interact with DBMS servers by means of a driver, a
library that is dynamically connected to the applications. The
driver masks the differences of interaction due to the DBMS, the
operating system and the network protocol

– For example, the trio (Sybase, Windows/NT, Novell)
identifies a specific driver

• ODBC does not support the two-phase commit protocol

Database Systems
Chapter 10: Distributed architectures

© McGraw-Hill 1999

Driver
(DBMS/OS/network)

ODBC
driver manager

Application

Data source

Architecture of ODBC

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

ODBC Components

• The application issues SQL queries

• The driver manager loads the drivers at the request of the
application and provides naming conversion functions. This
software is supplied by Microsoft

• The drivers perform ODBC functions. They execute SQL
queries, possibly translating them to adapt to the syntax and
semantics of specific products

• The data source is the remote DBMS system, which carries out
the functions transmitted by the client

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

X-Open distributed transaction processing
(DTP)

• A protocol that guarantees the interoperability of transactional
computations on DBMSs of different suppliers

• Assumes the presence of one client, several RMs and one TM

• The protocol consists of two interfaces:

– Between client and TM, called TM-interface
– Between TM and each RM, called XA-interface

• Relational DBMSs must provide the XA-interface

• Various products specializing in transaction management, such
as Encina (a product of the Transarc company) and Tuxedo
(from Unix Systems, originally AT&T) provide the TM
component

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

Features of X-Open DTP

• RM are passive; they respond to remote procedure calls issued
by the TM

• The protocol uses the two-phase commit protocol with the
presumed abort and read-only optimizations

• The protocol supports heuristic decisions, which in the presence
of failures allow the evolution of a transaction under the control
of the operator

– When an RM is blocked because of the failure of the TM, an
operator can impose a heuristic decision (generally the
abort), thus allowing the release of the resources

– When heuristic decisions cause a loss of atomicity, the
protocol guarantees that the client processes are notified

– The resolution of inconsistencies due to erroneous heuristic
decisions is application-specific

Database Systems
Chapter 10: Distributed architectures

© McGraw-Hill 1999

TM-Interface

tm_init()

tm_open()

tm_begin()

tm_commit()

Client-TM dialogue:

xa_open()

xa_start()

xa_precom()

xa_commit()

xa_abort()

Session opening

Transaction starts

Transaction ends (2PC)

XA-Interface

Session close

Recovery

xa_commit()

xa_abort()

xa_forget()

(TM-driven)

xa_end()

xa_close()tm_exit()

xa_recover()

Interactions among client, TM and server with the
X-OPEN DTP protocol

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

TM interface
• tm_init and tm_exit initiate and terminate the client-TM

dialogue
• tm_open and tm_term open and close a session with the TM

• tm_begin begins a transaction
• tm_commit requests a global commit

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

XA Interface
• xa_open and xa_close open and close a session between

TM and a given RM
• xa_start and xa_end activate and complete a new

transaction
• xa_precom requests that the RM carry out the first phase of the

commit protocol; the RM process can respond positively to the
call only if it is in a recoverable state

• xa_commit and xa_abort communicate the global decision
about the transaction

• xa_recover initiates a recovery procedure after the failure of a
process (TM or RM); the RM consults its log and builds three
sets of transactions:
– Transactions in doubt
– Transactions decided by a heuristic commit
– Transactions decided by a heuristic abort

• xa_forget allows an RM to forget transactions decided in a
heuristic manner

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

Co-operation among pre-existing systems

• Co-operation is the capacity of the applications of a system to
make use of application services made available by other
systems, possibly managed by different organizations

• Needs for co-operation rise for different reasons, which range
from the simple demand for integration of components
developed separately within the same organization, to the co-
operation or fusion of different companies and organizations

• The integration of databases is quite difficult. Over-ambitious
integration and standardization objectives are destined to fail.
The ‘ideal’ model of a highly integrated database, which can be
queried transparently and efficiently, is impossible to develop
and manage

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

Data-centered co-operation

• Two kinds of co-operation:

– process-centered co-operation: the systems offer one
another services, by exchanging messages, information or
documents, or by triggering activities, without making remote
data explicitly visible

– data-centered co-operation, in which the data is naturally
distributed, heterogeneous and autonomous, and accessible
from remote locations according to some co-operation
agreement

• We will concentrate on data-centered co-operation,
characterized by data autonomy, heterogeneity and distribution

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

Features of data-centered co-operation

• The transparency level measures how the distribution and
heterogeneity of the data are masked

• The complexity of distributed operations measures the degree of
coordination necessary to carry out operations on the co-
operating databases

• The currency level indicates whether the data being accessed is
up-to-date or not

• Based on the above criteria, we can identify three architectures
for guaranteeing data-based co-operation

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

Multidatabases

• Each of the participating databases continues to be used by its
respective users (programs or end users)

• Systems are also accessed by modules, called mediators, which
show only the portion of database that must be exported. They
make it available to a global manager, which carries out the
integration

• In general, data cannot be modified by means of mediators,
because each source system is autonomous

• Features:
– presents an integrated view to the users, as if the database

were integrated

– provides a high level of transparency

– currency is also high, because data is accessed directly

Database Systems
Chapter 10: Distributed architectures

© McGraw-Hill 1999

client client

clientclient Mediator Mediator Mediator

Local manager Local manager Local manager

Global manager

DB DB DB

Architecture of a multi-database system

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

Systems based on replicated data

• They guarantee read only access to secondary copies of the
information provided externally

• These may be stored in the data warehouse, which contains
data extracted from various heterogeneous distributed systems
and offers a global view of data

• Features:

– present a high level of integration and transparency, but
have a reduced degree of currency

Database Systems
Chapter 10: Distributed architectures

© McGraw-Hill 1999

clientclient Mediator Mediator Mediator

Local manager Local manager Local manager

DB DB DB

Integrator

client client

DW manager

Data Warehouse

Architecture for data warehouse systems

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

Systems based on external data access

• Data integration is carried out explicitly by the application

• In the next example, three sources are integrated: an external
database, a local database and a data warehouse, which in turn
uses three sources of information

• Features:

– Low degree of transparency and integration, with a degree of
currency that depends on specific demands

Database Systems
Chapter 10: Distributed architectures

© McGraw-Hill 1999

client

clientMediator Mediator Mediator

Local manager Local manager Local manager

DB DB DB

Integrator

client client

DW manager

Data Warehouse

Local manager

DB

Mediator

Local manager

DB

Architecture with external data access

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

Parallelism
• Was developed during the nineties along with the spread of

standard multiprocessor architectures, after the failure of special
architectures for databases (the so-called database machines)
during the eighties

• Parallelism is possible with multiprocessor architectures both
with and without shared memory, though with different technical
solutions

• The reason for the success of parallelism in databases is that
data management operations are quite repetitive in nature, and
can be carried out in parallel with great efficiency

– A complete scan of a large database can be executed using
n scans, each on a portion of the database. If the database
is stored on n different disks managed by n different
processors, the response time will be approximately 1/n of
the time required for a serial search

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

Inter-query parallelism

• Parallelism is called inter-query when it carries out different
queries in parallel

– The load imposed on the DBMS is typically characterized by
simple and frequent transactions (up to thousands of
transactions per second)

– Parallelism is introduced by multiplying the number of
servers and allocating an optimal number of requests to
each server

– In many cases, the queries are redirected to servers by a
dispatcher process

– Useful for OLTP systems

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

Intra-query parallelism

• Parallelism is known as intra-query when it carries out part of
the same query in parallel

– The load on the DBMS is characterized by a few extremely
complex queries, which are decomposed into various partial
sub-queries, to be executed in parallel

– In general, queries are carried out one after another, using
the entire multi-processor system for each query

– Useful for OLAP systems

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

Parallelism and data fragmentation

• Parallelism is normally associated with data fragmentation: the
fragments are distributed among many processors and allocated
to distinct secondary memory devices.

• Consider:
ACCOUNT(AccNum, Name, Balance)
TRANSACTION(AccNum,Date,SerialNumber,TransactionType,Amount)

Fragmented based on predefined intervals of account number

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

Example of a typical OLTP Query

• A typical OLTP query with inter-query parallelism:
procedure Query5(:acc-num, :total);

select Balance into :total

 from Account

 where AccNum = :acc-num;

end procedure;

• Directed towards specific fragments depending on their
selection predicates

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

Example of a typical OLAP Query

• A typical OLAP query with intra-query parallelism:
procedure Query6();

select AccNum, sum(Amount)

 from Account join Transaction

 on Account.AccNum = Transaction.AccNum

 where Date >= 1.1.1998 and Date < 1.1.1999

 group by AccNum

 having sum(Amount) > 100000;

end procedure;

• Carried out on all of the fragments in parallel

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

Distributed Joins

• The join of pairs of fragments corresponding to the same
account number interval; the joins between the matching
fragments can be carried out in parallel

• Essential for intra-query parallelism

– The parallel execution of n joins on fragments of dimension
(1/n) is obviously preferable to the execution of a single join
that involves the entire table

• In general, when the initial fragmentation does not allow the
distributed execution of the joins present in the query, data is
dynamically redistributed to support distributed joins

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

Speed-up and scale-up

• The speed-up curve characterizes only inter-query parallelism
and measures the increase of services, measured in tps
(transactions per second), against the increase in the number of
processors

– In the ideal situation, services increase almost linearly
against the increase in processors

• The scale-up curve characterizes both inter-query parallelism
and intra-query parallelism, and measures the average cost of a
single transaction against the increase of the number of
processors

– In the ideal situation, the average costs remain almost
constant with an increase in processors. We say that the
system ‘scales’ well

Database Systems
Chapter 10: Distributed architectures

© McGraw-Hill 1999

Speed-up in a parallel system

tps

200

140

120

80

40

0
8 16 24 32

Number of processors

Database Systems
Chapter 10: Distributed architectures

© McGraw-Hill 1999

Cost/tps

70

60

50

40

30

8 16 24 32
Number of processors

Scale-up in a parallel system

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

Transaction benchmarks
• Specific tests for measuring the efficiency of (possibly parallel) DBMS;

used for producing speed-up and scale-up curves under standard
conditions

• Standardized by TPC (Transaction Processing Performance Council), a
committee of about thirty suppliers of DBMSs and transaction systems

• Three main benchmarks (TPC-A, TPC-B and TPC-C) respectively for
OLTP, mixed, and OLAP applications. Can refer to a mainframe-based,
client-server, or parallel architecture

• Parameters of benchmarks:
– The transaction code

– The size of the database

– The method used for generating data

– The distribution of the arrivals of transactions

– The techniques for measuring and auditing the benchmark

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

Replicated databases

• Data replication is an essential service for the creation of many
distributed applications

• Provided by products called data replicators, whose main
function is to maintain the consistency among copies. They
operate transparently to applications running on the DBMS
server

• In general, there is one main copy and various secondary
copies, and updates are propagated asynchronously (without
the two-phase commit protocol)

• Propagation is incremental when it is based on data variations,
sent from the main copy to the secondary copy

• The use of replication makes a system less sensitive to failure,
because if the main copy is unavailable it is possible to use one
of its copies

Database Systems
Chapter 10: Distributed architectures

© McGraw-Hill 1999

Client Client Client Client Client

Server Server

F1 copy(F2) F2 copy(F1)

Example of architecture with replicated data

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

Description of the architecture

• The architecture has two identical sites. Each site manages the
entire database; half is the main copy and the other half is the
secondary copy

• All transactions are sent to the main copy and then redirected to
the secondary copy

• Each ‘access point’ to the system is connected to both sites

• In the case of a failure that involves only one site, the system is
capable of commuting almost instantly all the transactions onto
the other site, which is powerful enough to sustain the entire
load

• When the problem is resolved, the replication manager restores
the data transparently and then resets the two sites to normal
operations

• Specialized for high availability

Database Systems
Chapter 10: Distributed architectures

© McGraw-Hill 1999

update process
(batch)

F1

copy(F2)

copy(F3)

DBMS 1

DBMS 2

copy(F1)

F2

copy(F3)

Tandem information system

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

Description of the architecture

• An application created by Tandem towards the mid-eighties. Tandem
had about ten factories in various parts of the world, each responsible
for the production of a specific part of the architecture of a computer

• Tables representing the available parts in the company were
fragmented to reflect the physical distribution of the components, and
then allocated to the nodes, co-located with a factory, in a redundant
way:

– the main copy of each fragment was on the node responsible for
the production process of the components described in that
fragment

– secondary copies were replicated to all other nodes
• The replication manager acted periodically, by collecting a batch of

modifications on a given fragment and applying them asynchronously
to all the other fragments

Database Systems
Chapter 10: Distributed architectures

McGraw-Hill 1999

Advanced functions of replication managers
• Symmetrical replication: modifications can be carried out on any

copy, with a ‘peer-to-peer’ situation among the copies

– It is possible to introduce conflicts, in that two copies of the
same information are managed in a concurrent way without
concurrency control

– Techniques are capable of revealing inconsistencies after
their occurrence; repair is application-specific

• Disconnected replication: occurs with mobile systems, in which
the connection with the database can be broken
– For example, a salespersons can connect to the database in

order to download the availability of merchandise and upload
the orders received. The salesperson is normally
disconnected from the database and accepts transactions on
the copy. The copy is ‘reconciled’ with the main copy at the
end of the sale activity

