
&KDSWHU��

([HUFLVH����

Order the following domains according to the maximum value than can be represented, taking
LQWHJHU to have 32 bit for its representation and VPDOOLQW� 16 bit: QXPHULF�������� GHFLPDO�����
GHFLPDO�����LQWHJHU��VPDOOLQW��GHFLPDO������

6ROXWLRQ�

 Domain Max Value

1) Decimal(10) 9999999999
2) Integer 4294967296
3) Decimal(9) 999999999
4) Numeric(12,4) 99999999.9999
5) Decimal(6,1) 99999.9
6) Smallint 65536

([HUFLVH����

Define an attribute that allows the representation of string of maximum lenght of 256 characters, on
which no null values are admitted and with an ‘unknown’ default value.

6ROXWLRQ�

Create domain STRING as character varying (256) default ‘unknown’
not null

([HUFLVH����

Give the SQL definitions of the tables:

CrossCountrySkier(Name, Country,Age)
Competes(SkierName,ContestName, Placement)

Contest (Name, Place, Country, Lenght)

Showing particulary the foreing key constraints of the Competes table.

6ROXWLRQ�

Create table CrossCountrySkier
 (Name character (25) Primary key,

Country character (25),
Age smallint)

Create table Contest
 (Name character (25) Primary key,

Place character (30),
Country character (25),
Lenght numeric(6))

Create table Competes
 (SkierName character (25) references CrossCountrySkier (Name),

ContestName character (25),
Placement smallint,
Primary key (SkierName,ContestName),
foreing key (ContestName) refernces Competes(Name))

([HUFLVH����

Give the SQL definitions of the tables:

Author (FirstName, Surname, DateofBirth, Nationality)
Book (BookTitle, AuthorFirstName, authorSurname, Language)

For the IRUHLQJ�NH\ constraint specify a FDVFDGH policy on deletion and VHW�QXOO on updates.

6ROXWLRQ�

Create table Author
 (FirstName character (25),

Surname character (25),
DateofBirth date,
Nationality character (20),
primary key (FirstName, Surname))

Create table Book
 (BookTitle character (30) primary key,

AuthorFirstName character (25),
AuthorSurname character (25),
Language character (20),
foreing key (AuthorfirstName,AuthorSurname) references

Author (FirstName, Surname)
on delete cascade
on update set null)

([HUFLVH����

Given the schema in exercise 4.4, explain what can happen as a result of the execution of the
following update commands:

Delete from Author
where surname = ‘Russel’

Update Book set FirstName= ‘Umberto’
where surname = ‘Eco’

Insert into Author (FirstName, Surname)
values (‘Isaac’, ‘Asimov’)

Update Author set FirstName= ‘Emile’
where Surname = ‘Zola’

6ROXWLRQ�

1) This command deletes from table Author each row where atribute Surname = ‘Russel’. Because
of the cascade policy, every row in Book having AuthorSurname= ‘Russel’ will also be deleted.

2) This command is not correct, because ‘FirstName’ and ‘Surname’ are not attributes of table
Book.

3) This command adds a new author to table Author, if he does not exist. This has no effects on
table Book.

4) This command change to ‘Emile’ the first name of the authors where Surname= ‘Zola’; in table
Book each row which has AuthorSurname= ‘Zola’ and AuthorFirstName≠ ‘Emile’ will have a
NULL value on these attributes.

([HUFLVH����

Given the definitions:

create domain Domain1 integer default 10
create table Table1 (Attribute1 Domain1 default 5)

indicate what will happen as a result of these commands:

alter table Table1 alter column Atrribute1 drop default
alter domain Domain1 drop default
drop domain Domain1

6ROXWLRQ�

The first command deletes from Table1 the specification ‘default 5’ on Attribute1; the new default
value becomes 10, as specified in Domain1
The second command removes the specification ‘default 10’ from Domain1; the default value for
Attribute1 becomes 18//.
The last command removes the entire definition of Domain1; in table Table1 the domain of
Attribute1 becomes LQWHJHU.

([HUFLVH����

Given the following schema:

Airport (City, Country, NumberOfRunways)
Flight (FlightID, Day, DepartCity, DepartTime, ArrCity, ArrTime, PlaneType)

Plane (PlaneType, NumberOfPassengers)

Write the SQL queries with which we can find out:

1) The cities with airport for which the number of runways is not known.
2) The arrival and the departure countries of flight AZ 274.
3) The types of aircraft used for flights leaving Boston.
4) The types of aircrafts and the corresponding number of passengers for the types of aircraft used

for flights leaving Boston. If the description of the aircraft is not available, give only the type.
5) The cities from which international flight leave.
6) The cities from which direct flight to Sidney leave, in alphabetical order.
7) The number of International flights that leave Paris on Thursday.
8) The number of international flights that leave Canadian cities each week (to be done in two

ways, one showing the airport s without international flight and one not).
9) The French cities from which more than twenty direct flights to Germany leave each week.
10) The Belgian airport that have only domestic flights. Show this query in four ways: (i) with set-

theory operators, (ii) with a nested query with the QRW�LQ operator, (iii) with a nested query with
the QRW�H[LVW operator, (iv) with the outer join and the FRXQW�operator. Express the query also in
relational algebra.

11) The cities served by the type of aircraft able to carry the maximum number of passengers.
12) The maximum number of passengers who could arrive in a Greek airport from Norway on

Thursday. If there are several flights, the total number of passengers must be found.

6ROXWLRQ�

1) select City
from Airport
where NumberOfRunways is NULL

2) select A1.Country, A2.Country
from Airport as A1 join Flight on A1.City=ArrCity

join Airport as A2 on DepartCity=A2.City
where FlightID= ‘AZ274’

3) select Planetype
from Flight
where DepartCity=’Boston’

4) select Flight.Planetype, NumberOfPassengers
from Flight left join Plane

on Flight.Planetype=Plane.Planetype
 where DepartCity= ‘Boston’

5) select DepartCity
from Airport as A1 join Flight on DepartCity=A1.City

join Airport as A2 on ArrCity=A2.City
where A1.Country <> A2.Country

6) select DepartCity
from Flight
where ArrCity= ‘Sidney’
order by DepartCity

7) select count(*)
from Flight join Airport on ArrCity=City
where Country= ‘France’ and Day= ‘Thursday’

8) a. select count(*)
from Airport as A1 join Flight on A1.City=DepartCity

join Airport as A2 on ArrCity=A2.City
where A1.Country=’Canada’ and A2.Country<> ‘Canada’

b. select count(*)
from Airport as A1 join Flight on A1.City=DepartCity

join Airport as A2 on ArrCity=A2.City
where A1.Country=’Canada’

9) select DepartCity
from Airport as A1 join Flight on A1.City=DepartCity

join Airport as A2 on ArrCity=A2.City
where A1.Country=’France’ and A2.Country= ‘Germany’
group by DepartCity
Having count(*) >20

10) a. select DepartCity
from Flights join Airport on DepartCity=City
where Country= ‘Belgium’

except
select DepartCity
from Airport as A1 join Flight on A1.City=DepartCity

join Airport as A2 on ArrCity=A2.City
 where (A1.Country=’Belgium’ and A2.Country<>’Belgium’)

b. select DepartCity
from Flights join Airport on DepartCity=City
where Country= ‘Belgium’ and

 DepartCity not in
(select DepartCity
 from Airport as A1 join Flight on

A1.City=DepartCity
 join Airport as A2 on ArrCity=A2.City
 where A1.Country=’Belgium’ and

 A2.Country<> ‘Belgium’)

c. select DepartCity
from Flights join Airport as A1 on DepartCity=City
where Country= ‘Belgium’ and

 not exist (select *
 from Flight join Airport as A2

on A2.City=ArrCity
 where A1.City=DepartCity and

 A2.Country<>’Belgium’)

d. select DepartCity
from Airport as A1 join Flight on A1.City=DepartCity

left join Airport as A2 on
(ArrCity=A2.City and A2.Country=’Belgium’)

where A1.Country=’Belgium’
group by DepartCity
having (count(FlightID)= count (A2.Country))

e. ΠDepartCity σCoutry=’Belgium’ (Airport dCity=DepartCity Flight)
-

ΠDeparCity σCountry=’Belgium’ (Airport dCity=DepartCity Flight

dArrCity=City1 ρCity1,Country1,n1←City,Country,NumberOfRunways

(σCountry≠’Belgium’ (Airport)))

11) select DepartCity
from Flight join Plane on Flight.PlaneType=Plane.PlaneType
where NumberOfPassengers= (select max(NumberOfPassengers)

 from Plane)
union

select ArrCity
from Flight join Plane on Flight.PlaneType=Plane.PlaneType
where NumberOfPassengers= (select max(NumberOfPassengers)

 from Plane)

12) create view Passengers(Number)
as select sum (NumberOfPassengers)
 from Airport as A1 join Flight on A1.City=DepartCity

 join Airport as A2 on A2.City=ArrCity
 join Plane on Flight.PlaneType=Plane.PlaneType

where A1.Country=‘Norvey’ and A2.Country=’Greece’
 and Day=’Thursday’
group by A2.City

select max(Number)
from Passengers

([HUFLVH����

Given the following schema:

CD (CDNumber, Title, Year, Price)
Track (CDNumber,PerformanceCode, trackNo)

Recording (Performance, SongTitle, Year)
Composer (CompName, SongTitle)

Singer(SingerName, PerformanceCode)

Write SQL queries that will find:

1) The people who have written and sung a particular song and whose name begin with ‘D’.
2) The titles of the CDs that contain songs of which the year of recording is not know.
3) The tracks on the CDs with the serial number 78574. Provide these in numerical order,

indicating the performers for the track having a singer.
4) The exclusive composers and singers. That is, composers who have never recorded a song

and singers who have never written a song.
5) The singer on the CD that contains the largest number of songs.
6) The CDs on which all the songs are by a single singer and on which at least three recording

are from years preceding the release year of the CD.
7) The singers who have never recorded a song as soloist.
8) The singer who have never made a CD in which appears as the only singer.
9) The singer who have always recorded songs as soloist.

6ROXWLRQ�

1) select SingerName
from Singer join Recording on

 Singer.PerformanceCode=Recording.Performance
 join Composer on Recording.SongTitle=Composer.SongTitle

where SingerName=CompName and SingerName like ‘d%’

2) select Title
from CD join Track on CD.CDNumber=Track.CDNumber
 join Recording on

Track.PerformanceCode=Recording.PerformanceCode
where Recording.Year is NULL

3) select TrackNo, SingerName
from Track left join Singer on

 Track.PerformanceCode=Singer.PerformanceCode
where CDNumber=78574
order by TrackNo

4) select CompName
from Composer
where CompName not in

(select CompName
 from Composer join Recording on

Composer.SongTitle=Recording.SongTiltle
 join Singer on Performance=PerformanceCode
 where CompName=SingerName)
union

select SingerName
from Singer
where SingerName not in

(select SingerName
 from Singer join Recording on

Performance=PerformanceCode
 join Composer on

Recording.SongTitle=Composer.SongTitle
 where CompName=SingerName)

5) create view CdwithNumber (CdNumber,NumberofSongs)
as select CDNumber, count(*)
 from Track
 group by CDNumber

select SingerName
from Singer join Track on

Singer.PerformanceCode=Track.PerformanceCode
join CdwithNumber on

Track.CDNumber=CdwithNumber.CDNumber
where NumberofSongs= (select max (NumberofSongs)

 from CdwithNumber

6) select CDNumber
from CD
where CDNumber not in

(select CDNumber
 from Track join singer as S1 on

Track.PerformanceCode=S1.PerformanceCode
 join singer as S2 on

Track.PerformanceCode=S2.PerformanceCode
 where S1.SingerName<>S2.SingerName)

 and CDNumber is in
 (select CdNumber

 from Track join Recording on
PerformanceCode=Performance

 where Recording.Year<CD.Year
 group by CDNumber
 having count(*) >=3)

7) select SingerName
from Singer
where SingerName not in

(select S1.SingerName
 from Singer as S1 join Recording on

PerformanceCode=S1.Performance
 join Singer as S2 on

PerformanceCode=S2.Performance
 group by PerformanceCode
 having count(*)=1)

8) Create view OneSingerCD (SingerName) as
select SingerName
from Track join Singer on

Track.PerformanceCode=Singer.PerformanceCode
where CDNumber not in

(select CDNumber
 from Track join Singer as S1 on

Track.PerformanceCode=S1.PerformanceCode
 join Singer as S2 on

PerformanceCode=S2.Performance
 where S1.SingerName=S2.SingerName)

select SingerName
from Singer
where SingerName not in OneSingerCD

9) select SingerName
from Singer
where SingerName not in

(select S1.SingerName
 from Singer as S1 join Recording on

Performance=S1.PerformanceCode
 join Singer as S2 on

Performance=S2.PerformanceCode)
 where S1.SingerName<> S2.SingerName)

([HUFLVH����

Give a sequence of update commands that alter the attribute 6DODU\ in the (PSOR\HH table,
increasing by 10% the salaries below 30 thousand and decreasing by 5% those above 30 thousand.

6ROXWLRQ�

update Employee set Salary=Salary/2
where Salary <= 30000

update Employee set Salary=Salary*0.95
where Salary > 30000

update Employee set Salary=Salary*2.2
where Salary<= 15000

([HUFLVH�����

Define on the Employee table the constraint that the ‘Administration’ department has fewer than
100 employees, with an average salary higher than 40 thousand.

6ROXWLRQ�

check (100 >= (select count(*)
 from Employee

 where Department=’Administration’)
 and 40000 <= (select avg(Salary)

 from Employee
 where Department=’Administration’))

([HUFLVH�����

Define at schema level the constraint that the maximum salary of the employees of departmant
based in London is less than the salary of all the employees in the Directors department.

6ROXWLRQ�

create assertion LessSalary
 check (not exist (select *

 from Employee join Department on
Employee.Departement=Department.Name

 where Department.City=’London’ and
 salary > (select max(Salary)

 from Employee
 where Deparment=’Directors’)

))

([HUFLVH�����

Define a view that shows for each department the average value of the salaries higher than the
average.

6ROXWLRQ�

create view HighAverageSalary (Department,Salary) as
select Department, avg(Salary)
from Employee
where Salary > (select avg(Salary)

 from Employee as E1)
 where Department=E1.Deparment)
group by Department

([HUFLVH�����

Using the definition of a view, allow the user ‘Fred’ to access the contents of (PSOR\HH, excluding
the Salary attribute.

6ROXWLRQ�

If the (PSOR\HH�schema is:

Employee(RegNo, Surname, FirstName, Salary, Department)

a possible solution is:

create view
EmployeeWithoutSalary(RegNo,Surname,FirstName,Department) AS
select RegNo,Surname,FirstName,Departmant
from Employee

grant select on EmployeeWithOutSalary to Fred

([HUFLVH�����

Describe the effects of the following istructions: which autorizations are present after each
istruction ? (Each row is preceded by the name of the person who issues the command)

Stefano: grant select on Table1 to Paolo,Riccardo
with grant option

Paolo: grant select on Table1 to Piero
Riccardo: grant select on Table1 to Piero with grant option
Stefano: revoke select on Table1 from Paolo cascade
Piero: grant select on Table1 to Paolo
Stefano: revoke select on Table1 from Riccardo cascade

6ROXWLRQ�

1) Stefano gives the autorization to select on Table1 to Paolo and Riccardo; they can concess
the same autorization to other users, because of the grant option.

2) Paolo grants the select autorization on Table1 to Piero.

3) Riccardo grants the select autorization on Table1 to Piero. with grant option; Piero has now
2 differents privilegies on Table1.

4) Stefano revoke the select autorization to Paolo, with the cascade option; also Piero lost the
autorization granted by Paolo, but he still have access to Table1.

5) Paolo has again the autorization to select on Table1, because Piero grants it to him.

6) Stefano revoke the select autorization to Riccardo with tha cascade option; also Piero and
Paolo lost this privilegy, and now only Stefano can access Table1

