
Chapter 9

Exercise 9.1

Indicate whetever the following schedules can produce anomailes; the symbols ci and ai indicate the
result (commit or abort) of the transaction.

1) r1(x), w1(x), r2(x), w2(y), a1, c2

2) r1(x), w1(x), r2(y), w2(y), a1, c2

3) r1(x), r2(x), r2(y), w2(y), r1(z), a1, c2

4) r1(x), r2(x), w2(x), w1(x), c1, c2

5) r1(x), r2(x), w2(x), r1(y), c1, c2

6) r1(x), w1(x), r2(x), w2(x), c1, c2

Sol:

1) The operation r2(x) reads the value written by w1(x), but the transaction 1 ends with an abort.
This is a case of Dirty Read.

2) This schedule does not produce anomalies, because the two transactions refer to different
objects.

3) This schedule does not produce anomalies because the transaction 1 does not write any
objects.

4) This schedule produces an Update Loss.
5) This schedule does not produce anomalies.
6) This schedule does not produce anomalies.

Exercise 9.2

Indicate whether the following schedules are VSR.

1) r1(x), r2(y), w1(y), r2(x), w2(x)
2) r1(x), r2(y), w1(x), w1(y), r2(x), w2(x)
3) r1(x), r1(y), r2(y), w2(z), w1(z), w3(z), w3(x)
4) r1(y), r1(y), w2(z), w1(z), w3(z), w3(x), w1(x)

Sol :

1) This schedule is not VSR, because the two serial schedule
S1: r1(x), w1(y), r2(y), r2(x), w2(x) and
S2: r2(y), r2(x), w2(x), r1(x), w1(y)

 are not view-equivalent to the given schedule; they have a different READ-FROM relation.

2) r1(x), r2(y), w1(x), w1(y), r2(x), w2(x)

 This schedule is not VSR because the schedules
 S1: r1(x), w1(x), w1(y) r2(y), r2(x), w2(x)

 S2: r2(y), r2(x), w2(x), r1(x), w1(x), w1(y)

 have a different READ-FROM relation.

3) This schedule is VSR because it is view-equivalent to the serial schedule:

S : r2(y), w2(z), r1(x), r1(y), w1(z), w3(z), w3(x)

4) This schedule is not-VSR, because it cannot exist a serial schedule with the same FINAL WRITE
relation; note that transaction 1 has the final write on X and also a write on Z, while transaction 3 has
the final write on Z and also a write on X.

Exercise 9.3

Classify the following schedules (as: Non-VSR, VSR, CSR). In the case of a schedule that is both
VSR and CSR, indicate all the serial schedules equivalent to them.

1) r1(x), w1(x), r2(z), r1(y), w1(y), r2(x), w2(x), w2(z)
2) r1(x), w1(x), w3(x), r2(y), r3(y), w3(y), w1(y), r2(x)
3) r1(x), r2(x), w2(x), r3(x), r4(z), w1(x), w3(y), w3(x), w1(y), w5(x), w1(z), w5(y), r5(z)
4) r1(x), r3(y), w1(y), w4(x), w1(t), w5(x), r2(z), r3(z), w2(z), w5(z), r4(t), r5(t)
5) r1(x), r2(x), w2(x), r3(x), r4(z), w1(x), r3(y), r3(x), w1(y), w5(x), w1(z), r5(y), r5(z)
6) r1(x), r1(t), r3(z), r4(z), w2(z), r4(x), r3(x), w4(x), w4(y), w3(y), w1(y), w2(t)
7) r1(x), r4(x), w4(x), r1(y), r4(z), w4(z), w3(y), w3(z), w1(t), w2(z), w2(t)

1) This schedule is both VSR and CSR, and it is conflict-equivalent to
 S: r1(x), w1(x), r1(y), w1(y), r2(z), r2(x), w2(x), w2(z)

2) r1(x), w1(x), w3(x), r2(y), r3(y), w3(y), w1(y), r2(x)

This schedule is Not-VSR. In a sequential schedule view-equivalent to this schedule the transaction 1
should follow the transaction 3 because of the FINAL WRITE on Y, but however it should precede
the transaction 3 because of the READ FORM relation on X.

3) r1(x), r2(x), w2(x), r3(x), r4(z), w1(x), w3(y), w3(x), w1(y), w5(x), w1(z), w5(y), r5(z)

T1

T5

T4

T3

T2

This schedule is not CSR because the conflict graph is cyclic.
This schedule is also Non-VSR, because, referring to X, the transaction1 should precede the
transaction 2, and transaction 2 should precede the transaction 1 (the two transactions both read X
before any write operation).

4) r1(x), r3(y), w1(y), w4(x), w1(t), w5(x), r2(z), r3(z), w2(z), w5(z), r4(t), r5(t)

T1

T5

T2

T3

T4

This schedule is both CSR and VSR.
The equivalent serial schedules are:

S1: r3(y), r3(z), r1(x), w1(y), w1(t), r2(z), w2(z), w4(x), r4(t), w5(x), w5(z), r5(t)
S2: r3(y), r3(z), r2(z), w2(z), r1(x), w1(y), w1(t), w4(x), r4(t), w5(x), w5(z), r5(t)

5) r1(x), r2(x), w2(x), r3(x), r4(z), w1(x), r3(y), r3(x), w1(y), w5(x), w1(z), r5(y), r5(z)

This schedule is Non-VSR; the transaction 1 and 2 both read and write X, but in this schedule they
read X before any write operation, and so any sequential schedule with these transaction will have a
different READ FROM relation.

6) r1(x), r1(t), r3(z), r4(z), w2(z), r4(x), r3(x), w4(x), w4(y), w3(y), w1(y), w2(t)

T1

T2 T3

T4

This schedule is not CSR.
This schedule is also Non-VSR; the transaction 1 has the FINAL WRITE on Y, and so it should
follow the transaction 4. But the transaction 4 writes X, and so it should follow the transaction 1.

7) r1(x), r4(x), w4(x), r1(y), r4(z), w4(z), w3(y), w3(z), w1(t), w2(z), w2(t)

T1

T2 T3

T4

This schedule is both CSR and VSR.

The serial schedule equivalent is:
S: r1(x), r1(y), w1(t), r4(x), w4(x), r4(z), w4(z), w3(y), w3(z), w2(z), w2(t)

Exercise 9.4

If the above schedules are presented to a schedule that uses two-phase locking, which transaction
would be placed in waiting ? (Note that once a transaction is placed in waiting, its successive actions
are not considered.)

Sol:

1) r1(x), w1(x), r2(z), r1(y), w1(y), r2(x), w2(x), w2(z)

No transaction in waiting.

2) r1(x), w1(x), w3(x), r2(y), r3(y), w3(y), w1(y), r2(x)

The transaction 1 and 3 are placed in waiting, but however this schedule can produce a deadlock : the
action r2(x) must wait for the object x, locked by the transaction 1, and the transaction 1 is waiting for
the object y, locked by the transaction 2.

3) r1(x), r2(x), w2(x), r3(x), r4(z), w1(x), w3(y), w3(x), w1(y), w5(x), w1(z), w5(y), r5(z)

The transactions 2, 3 and 5 are put in waiting, because of the lock on x.

4) r1(x), r3(y), w1(y), w4(x), w1(t), w5(x), r2(z), r3(z), w2(z), w5(z), r4(t), r5(t)

The transactions 1, 3, 4 and 5 are put in waiting. The transaction 1 must wait for y (locked by t2), the
transactions 4 and 5 must wait for x (locked by t1) and the transaction 3 must wait for z (locked by t2).

5) r1(x), r2(x), w2(x), r3(x), r4(z), w1(x), r3(y), r3(x), w1(y), w5(x), w1(z), r5(y), r5(z)

The transaction 2, 3 and 5 are put in waiting. They must wait for x (locked by t1).

6) r1(x), r1(t), r3(z), r4(z), w2(z), r4(x), r3(x), w4(x), w4(y), w3(y), w1(y), w2(t)

The transaction 2, 3 and 4 are put in waiting. t2 and t4 must wait for z (locked by t3), and t3 must wait
for y (locked by t1).

7) r1(x), r4(x), w4(x), r1(y), r4(z), w4(z), w3(y), w3(z), w1(t), w2(z), w2(t)

The transaction 3 and 4 are put in waiting. They must wait for x and y, locked by t1.

Exercise 9.5

Define the data structure necessary for the management of locking, for a non-hierarchical model with
read repeatability. Implement in a programming language of your choice the functions lock_r,
lock_w, and unlock. Assume that an abstract type ‘queue’ is available with the appropriate functions
for the insertion of an element into a queue and for extracting the first element of the queue.

Sol:

Transaction are identified with a number, objects are identified with a string.

typedef struct resource {
char *identifier;
int free; // 1 is free, 0 is busy
int r_locked; // 1 or more locked, 0 free
int w_locked; // 1 locked
queue waiting_transaction;

}

typedef struct queue_element {
int transaction;
int type // 0 read, 1 write

}

typedef *resource locktable;

locktable lt=new locktable [N]; // N is the number of resources

int lock_r (int transaction, char *resource) {
int i=0;
int end=0;
while ((i<N) && (!end))
 if (strcmp(resource, lt[i])!=0) i++; else end=1;
if (!end) return -1; // resource not found
if (lt[i].free)
 { lt[i].free=0;
 lt[i].r_locked=1;
 return transaction; }

 if (lt[i].r_locked)
 { lt[i].r-locked++;
 return transaction; }

 // the resource is w_locked

queue_element q=new queue_element;
q->transaction=transaction;
q->type=0;
in_queue(q,lt[i].queue);
return 0; }

int lock_w (int transaction, char *resource) {
int i=0;
int end=0;
while ((i<N) && (!end))
 if (strcmp(resource, lt[i])!=0) i++; else end=1;
if (!end) return -1; // resource not found
if (lt[i].free)

{ lt[i].free=0:
 lt[i].w_locked=1;
 return transaction;
}

queue_element q=new queue_element;
q->transaction=transaction;
q->type=1;
in_queue(q,lt[i].queue);
return 0;

}

int unlock (int transaction, char *resource) {
int i=0;
int end=0;
while ((i<N) && (!end))
 if (strcmp(resource, lt[i])!=0) i++; else end=1;
if (!end) return -1; // resource not found

if (lt[i].r_locked)
{ lt[i].r_locked--;
 if (lt[i].r_locked) return 0;
 if (is_empty(lt[i].queue))
 { lt[i].free=1;
 return 0;
 }
 queue_element q=out_queue(lt[i].queue);
 lt[i].w_locked=1; // transaction in queue must be write-

transaction
 return q.transaction;
}

 if (is_empty(lt[i].queue))
 { lt[i].free=1;
 return 0;
 }

 queue_element q=out_queue(lt[i].queue);
 if (!(q.type)) // read transaction in queue
 { lt[i].r_locked=1;
 lt[i].w_locked=0; }

 // now unlock extracts all the read-transaction from the queue;
 while (!(first_element(lt[i].queue)).type))
 { out_queue (lt[i].queue);
 r_locked++;
 }
 return q.transaction; }

Exercise 9.6

With reference to the exercise above, add a timeout mechanism. Assume that we have available
functions for getting the current system time and for extracting a specific element from a queue.

Sol:

The structure queue_element must be modified as follow:

typedef struct queue_element {
int transaction;
int type;
int time;

}

The field time represents the instant in which the transaction is put in waiting.
The functions lock_r and lock_w must fill also this field before put in queue a transaction, using the
instruction:

q.time=get_system_time();

The timeout mechanism is realised by a new function, check_time, which is called periodically by the
system.

void check_time() {
int now=get_system_time;
for (int i=0:; i<N; i++)
 if (!is_empty(lt[i].queue))
 { int l=queue_length(lt[i].queue);
 for (int j=0; j<l; j++)
 { queue_element q=get_queue_element(lt[i].queue,j);
 if ((q.time+MAX_TIME)<now)
 remove_from_queue(lt[i].queue,j);
 }
 }

}

Exercise 9.7

If the schedules described in Exercise 9.3 were presented to a timestamp-based scheduler, which
transaction would be aborted ?

Sol:

1) r1(x), w1(x), r2(z), r1(y), w1(y), r2(x), w2(x), w2(z)

Operation Response New Values

read(x,1) Ok RTM(x)=1
write(x,1) Ok WTM(x)=1
read(z,1) Ok RTM(z)=2
read(y,1) Ok RTM(y)=1
write(y,1) Ok WTM(y)=1
read(x,2) Ok RTM(x)=2
write(z,2) Ok WTM(z)=2

No transaction is aborted.

2) r1(x), w1(x), w3(x), r2(y), r3(y), w3(y), w1(y), r2(x)

Operation Response New Values

read(x,1) Ok RTM(x)=1
write(x,1) Ok WTM(x)=1
write(x,3) Ok WTM(x)=3
read(y,2) Ok RTM(y)=2
read(y,3) Ok RTM(y)=3
write(y,3) Ok WTM(y)=3
write(y,1) t1 aborted
read(x,2) t2 aborted

3) r1(x), r2(x), w2(x), r3(x), r4(z), w1(x), w3(y), w3(x), w1(y), w5(x), w1(z), w5(y), r5(z)

Operation Response New Values

read(x,1) Ok RTM(x)=1
read(x,2) Ok RTM(x)=2
write(x,2) Ok WTM(x)=2
read(x,3) Ok RTM(x)=3
read(z,4) Ok RTM(z)=4
write(x,1) t1 aborted
write(y,3) Ok WTM(y)=3
write(x,5) Ok WTM(x)=5
write(y,5) Ok WTM(y)=5
read(z,5) Ok RTM(z)=5

4) r1(x), r3(y), w1(y), w4(x), w1(t), w5(x), r2(z), r3(z), w2(z), w5(z), r4(t), r5(t)

Operation Response New Values

read(x,1) Ok RTM(x)=1
read(y,3) Ok RTM(y)=3
write(y,1) t1 aborted
write(x,4) Ok WTM(x)=4
write(x,5) Ok WTM(x)=5
read(z,2) Ok RTM(z)=2
read(z,3) Ok RTM(z)=3
write(z,2) t2 aborted
write(z,5) Ok WTM(z)=5
read(t,4) Ok RTM(t)=4
read(t,5) Ok RTM(t)=5

5) r1(x), r2(x), w2(x), r3(x), r4(z), w1(x), r3(y), r3(x), w1(y), w5(x), w1(z), r5(y), r5(z)

Operation Response New Values

read(x,1) Ok RTM(x)=1
read(x,2) Ok RTM(x)=2
read(x,3) Ok RTM(x)=3
read(z,4) Ok RTM(z)=4
write(x,1) t1 aborted
read(y,3) Ok RTM(y)=3
read(x,3) Ok RTM(x)=3
write(x,5) Ok WTM(x)=5
read(y,5) Ok RTM(y)=5
read(z,5) Ok RTM(z)=5

6) r1(x), r1(t), r3(z), r4(z), w2(z), r4(x), r3(x), w4(x), w4(y), w3(y), w1(y), w2(t)

Operation Response New Values

read(x,1) Ok RTM(x)=1
read(t,1) Ok RTM(t)=1
read(z,3) Ok RTM(z)=3
read(z,4) Ok RTM(z)=4
write(z,2) t2 aborted
read(x,4) Ok RTM(x)=4
read(x,3) t3 aborted
write(x,4) Ok WTM(x)=4
write(y,4) Ok WTM(y)=4
write(y,2) t1 aborted
write(t,2) Ok WTM(t)=2

7) r1(x), r4(x), w4(x), r1(y), r4(z), w4(z), w3(y), w3(z), w1(t), w2(z), w2(t)

Operation Response New Values

read(x,1) Ok RTM(x)=1
read(x,4) Ok RTM(x)=4
write(x,4) Ok WTM(x)=4
read(y,1) Ok RTM(y)=1
read(z,4) Ok RTM(z)=4
write(y,3) Ok WTM(y)=3
write(z,3) t3 aborted
write(t,1) Ok WTM(t)=1
write(z,2) t2 aborted

Exercise 9.8

Consider both single-version and multi-version concurrency control based on timestamp for an object
X. Initially WTM(X)=5, RTM(X)=7. Indicate the action of the scheduler in response to the following
input:

r(x, 8), r(x, 17), w(x, 16), w(x, 18), w(x, 23), w(x, 29), r(x, 20), r(x, 30), r(x, 25).

Sol:

Single-Version:

Operation Response New Values

WTM(x)=5
RTM(x)=7

read(x,8) Ok RTM(x)=8
read(x,17) Ok RTM(x)=17
read(x, 16) t16 aborted
write(x,18) Ok WTM(x)=18
write(x,23) Ok WTM(x)=23
write(x,29) Ok WTM(x)=29
read(x,20) t20 aborted
read(x,30) Ok RTM(x)=30
read(x,25) t25 aborted

Multi-Version

Operation Response New Values

WTM1(x)=5
RTM(x)=7

read(x,8) Ok RTM(x)=8
read(x,17) Ok RTM(x)=17
read(x, 16) t16 aborted
write(x,18) Ok WTM2(x)=18
write(x,23) Ok WTM3(x)=23
write(x,29) Ok WTM4(x)=29
read(x,20) Ok RTM(x)=20 reads from x2

read(x,30) Ok RTM(x)=30 reads from x4

read(x,25) Ok RTM(x)=30 reads from x3

Exercise 9.9

Define the data structure necessary for buffer management. Implement in a programming language of
your choice the functions fix, use and unfix. Assume we have available the system functions
described in section 9.3.4.

Sol:

typedef struct page {
int *address;
int valid;
int modified;
int in_use;
int file_id;
int block_num;

}

typedef struct file_open {
int file_id;
char *file_name;
int size;
int blocks[]; // each element refers to an element in page table

}

typedef page_table *page;
typedef file_table *file_open;

page_table pt=new page_table[N];
file_table ft=new file_table[M];

int fix(char *file_name, int block) {
int i=0;
int found=0;
while (i<0 && !found)
 if (strcmp(file_name,ft[i].file_name)!=0) i++; else found=1;

if (found && ((ft[i].blocks[block])!=-1) &&
 pt[ft[i].blocks[block]].valid)

 // -1 means that the block is
 // not loaded

 return (pt[ft[i].blocks[block]]).address;

if (!found) { // file is open
int id=open(file_name);
int position=get_file_position() // find a free position in ft
ft[position].file_id=id;
strcpy(file_name, ft[position].file_name);
ft[position].size=get_size(id);
for(int k=0; k<ft[position].size; k++)
 ft[position].blocks[k]=-1;

}

 // block is read

int free=get_free_page(); // find a free page in pt
read(ft[i].file_id, block, free.address);
pt[free].valid=1;
pt[free].modified=0;
pt[free].file_id=ft[i].file_id
pt[free].block_num=block;
return pt[free].address;

}

void use (int *page) {
int i=0;
int found=0;
while (i<N && !found)

if (pt[i].address!=page) i++ else found=1;
pt[i].in_use=1;

}

void unfix(int *page) {
int i=0;
int found=0;
while (i<N && !found)

if (pt[i].address!=page) i++ else found=1;
pt[i].in_use=0;
if (pt[i].modified) {
 pt[i].valid=0;
 int j=0;

 found=0;
 while (j<N && !found)

 if (ft[j].file:id!=pt[i].file_id) j++ else found=1;
 ft[j].block[pt[i].block_number]=-1;
}

}

Exercise 9.10

Describe the warm restart, indicating the progressive building of the sets UNDO and REDO and the
recovery action, given the following situation in the log:

DUMP, B(T1), B(T2), B(T3), I(T1, O1, A1), D(T2, O2, B2), B(T4), U(T4, O3, B3, A3),
U(T1, O4, B4, A4), C(T2), CK(T1, T3, T4), B(T5), B(T6), U(T5, O5, B5, A5), A(T3), CK(T1, T4, T5, T6),
B(T7), A(T4), U(T7, O6, B6, A6), U(T6, O3, B7, A7), B(T8), A(T7), failure

Sol:

1) First of all the log is traced back until the first check-point record: CK(T1, T4, T5, T6).
 The two sets UNDO and REDO are respectively:

 UNDO= { T1, T4, T5, T6 } REDO={}

2) The log is traced forward, updating the two sets:

 - B(T7) UNDO= { T1, T4, T5, T6, T7 } REDO={}
 - A(T4) UNDO= { T1, T4, T5, T6, T7 } REDO={}
 - B(T8) UNDO= { T1, T4, T5, T6, T7, T8 } REDO={}
 - A(T7) UNDO= { T1, T4, T5, T6, T7 } REDO={}

3) The log is traced back again, until the operation I(T1, O1, A1), executing the following undo
operation:

O3=B7

O6=B6

O5=B5

O4=B4

O3=B3

Delete O1

4) The log is traced forward, but the REDO set is empty, and so no redo-operation will be executed.

Exercise 9.11

Assume that in the above situation a device failure involves the objects O1, O2 and O3. Describe the
cold restart.

Sol:

After the system restart, the log is traced back until the first DUMP record. The DUMP is accessed
and the damaged parts are selectively copied.

Then the log is traced forward and all the actions regarding the damaged parts are applied:

Insert O1=A1

Delete O2

O3=A3

Commit (T2)
Abort (T4)
O3=A7

Finally, the warm restart is applied.

Exercise 9.12

Consider a hash structure for storing tuples whose key fields contains the following names:

Green, Lovano, Osby, Peterson, Pullen Scofield, Allen, Haden, Harris, MacCann, Mann, Brown,
Newmann, Ponty, Cobbham, Coleman, Mingus, Lloyd, Tyner, Hutcherson, Grant, Fortune, Coltrane,
Sheep.

1) Suggest a hashing function with B=8 and F=4
2) Supposing B=40 and F=1, what is the probability of conflict ? And with B=20 and F=2 ?
3) With F=5 and B=7, what is the approximate length of the overflow chain ?

Sol:

1) A simple hashing function for the given names is:
- For each character in the name, consider the corresponding number in alphabetical

order (a=1, b=2...).
- Sum all the numbers so obtained, and make the ‘modulo B’ division.

In this way we will obtain for each name a number between 0 and B-1.

Example:

Hash(Green)=(7+18+5+5+14) mod 8=1
Hash(Lovano)=(12+15+22+1+13+15) mod 8=6
Hash(Osby)=(15+19+2+25) mod 8=5
Hash(Peterson)=(16+5++20+5+18+19+15+13) mod 8=7

2) With B=40 and F=1 the probability of conflict is

6648,0
40

39

40

1
241

1
1

1
1

231

=

⋅⋅−=

 −⋅

−=

−T

BB
Tp

With B=20 and F=2

4079,0
20

19

20

1

2

24

20

19

20

1
241

1
1

1
1

22223

1

)(

=

⋅

⋅

−

⋅⋅−=

 −⋅

⋅

−= ∑

=

−F

i

iTi

BBi

T
p

Note that this is the probability of having two or more collision in the same block, because each block
contains 2 tuples, and 1 collision is admitted.

4) The length of the overflow chain may calculated as the weighted sum of probability of
collisions:

 768,0
1

1
1

)(

1

=

 −⋅

⋅

⋅=

−

+=
∑

iT
T

Fi

i

BBi

T
il

Exercise 9.13

Consider a B+ tree structure for storing tuples whose key field contains the data listed in the above
exercise.

1) Describe a balanced B+ tree structure with F=2, which contains the listed data.
2) Introduce a data item that causes the split of a node at leaf level, and show what happens at

leaf level and at the level above.
3) Introduce a data item that causes a merge of a node at leaf level, and show what happens at

leaf level and at the level above.
4) Show a sequence of insertions that causes the split of the root and the lengthening of the tree.
5) Describe a B tree structure, with F=3, that contains the given data.

Sol:

1)

Cobbham Coleman Grant Green Osby

Peterson Ponty

Harris Htcheston

Scofield

McCann MingusLovano Pullen Sheep Tyner

MannLloyd NewmannHarenColtrane FortuneAllen Brown

Cobbham Grant Haren Lloyd Mann McCann Osby Pullen Sheep

Coltrane Harris Newmann Scofield

Lovano Peterson

This B+ tree contains all the key values. It has 16 nodes at leaf level.

2) The introduction of value “Brooke” causes a split at leaf level, as illustrated in the following
 figures:

Cobbham ColemanAllen Brown

Cobbham

BrownAllen Brooke

Brown Cobbham

Cobbham Coleman

3) The cancellation of value “Mann” causes a merge of a node at leaf level:

Cobbham ColemanAllen Brown

Mann Cobbham

Mann

McCann Mingus

McCann

Lovano

5) The insertion of values “Brooke”, “Adam” causes a root split:

Brooke
Cobbham Coleman

Osby

Peterson Ponty

Harris Htcheston

Scofield

McCann MingusLovano Pullen Sheep Tyner

MannLloyd NewmannHarenBrownAdam Allen

Brooke Cobbhamm Lloyd Mann McCann Osby Pullen Sheep

Brown Newmann Scofield

PetersonColtran

Lovano

Harris

Grant Haren

Grant Green

Coltrane Fortune

6) The following figure shows a B tree with the given data.

Allen Brown

Cobbham Coleman

Lovano McCann Mingus Newmann

Osby

Sheep TynerColtrane Fortune

Grant Green Haren Lloyd

Harris Hutcheston

Mann

Peterson Ponty Pullen

Scofield

Cobbham Coltrane Grant Lloyd Mann McCann Peterson Scofield Sheet

Harris Lloyd Osby

Exercise 9.14

Consider the database made up of the following relations:

Production (ProdNumber, PartType, Model, Quan, Machine)
OrderDetail (OrderNumber, ProdNumber)

Order(OrderNumber, Client, Amount)
Commission (OrderNumber, Seller, Amount)

Assume the following profiles

CARD(Production)=200000 Size(Production)=41
CARD(OrderDetail)=50000 Size(OrderDetail)=15
CARD(Order)=10000 Size(Order)=45
CARD(Commission)=5000 Size(Commission)=35
SIZE(ProdNumber)=10 VAL(ProdNumber)=200000
SIZE(PartType)=1 VAL(PartType)=4
SIZE(Model)=10 VAL(Model)=400
SIZE(Quan)=10 VAL(Quan)=100
SIZE(Machine)=10 VAL(Machine)=50
SIZE(OrderNumber)=5 VAL(OrderNumber)=10000
SIZE(Client)=30 VAL(Client)=400
SIZE(Amount)=10 VAL(Amount)=5000
SIZE(Seller)=20 VAL(Seller)=25

Describe the algebraic optimization and the computation of the profiles of the intermediate results for
the following queries, which need to be initially expressed in SQL and then translated into relational
algebra:

1) Find the available quantity of the product 77Y6878.
2) Find the machines used for the production of the parts sold to client Brown.
3) Find the clients who have bought from the seller White a box model 3478.

For the last two queries, which require the joining of three tables, indicate the ordering between joins
that seem most convenient based on the size of the tables. Then describe the decision tree for the
second query allowing for a choice of only two join methods.

Sol:

1) SQL:
select Quan
from Production
where ProdNumber=”77Y6878”

 Relational Algebra

ΠQuan(óProdNumber=”77y6878”(Production))

This query doesn’t need any algebraic optimization. If we indicate with T the table result of the query,
the profile is:

CARD(T)=1 SIZE(Quant)=10
SIZE(T)=10 VAL(Quan)=1

2) SQL :

select Machine
from Production join OrderDetail on
 Production.ProdNumber=OrderDetail.ProdNumber

join Order on OrderDetail.OrderNumber=Order.OrderNumber
where Client= ”Brown”

 Relational Algebra

ΠMachine(σClient=”Brown’

 (Production ProdNumber=p � �o,p←OrderNUmber, ProdNumber(OrderDetail)
 � o=OrderNumber Order))

Algebraic optimization: pushing down of selection and projections:

ΠMachine (ΠPr (ΠOrderNumber (σClient=”Brown’ (Order)) � OrderNUmber=Or

 �Or,Pr←OrderNumber, ProdNumber (OrderDetail))
 � Pr=ProdNumber (ΠProdNumber, Machine (Production)))

Let T1= ΠOrderNumber (σClient=”Brown’ (Order))

We have that:

25)(
)(

1
)(1 =⋅= OrderCARD

ClientVAL
TCARD

5)(1 =TSIZE

The most convenient choice in ordering joins is (Order � OrderDetail) � Production

Let T2= ΠPr (T1 � OrderDetail)

125
)(

1
)()()(12 =⋅=

rOrderNumbeVAL
lOrderDetaiCARDTCARDTCARD

10)(2 =TSIZE

Note that the projection may be carried out together with the scan, and so does not need other
intermediate results.

Let T3= ΠProdNumber, Machine (Production)

200000)(3 =TCARD

20)(3 =TSIZE

Finally, let T4= ΠMachine (T2 � T3)

50))(,
)(Pr

1
)()(()(324 =⋅⋅= MachineVAL

odNumberVAL
TCARDTCARDMinTCARD

10)(4 =TSIZE

Decision tree:

Production � Order � OrderDetail

(Production� Order)� OrderDetail (Production� OrderDetail)� Order (Order� OrderDetail)� Production

� merge scan � hash join � merge scan � hash join � merge scan � hash join

� merge � hash � merge � hash � merge � hash � merge � hash � merge � hash � merge � hash

The first choice regards the order between joins, the second choice indicates the type of first join
chosen, the last choice indicates the type of the second join.

3) SQL:
select Client
from Order join OrderDetail on
 Order.OrderNumber=OrderDetail.OrderNumber

join Commission on
 Order.OrderNumber=Commission.OrderNumber
where Seller=’White’ and ProdNumber=’3478’

Relational Algebra

ΠClient (σSeller=’white’∧ ProdNumber=’3478’ (Order � OrderNUmber=Or

�Or←OrderNuber (OrderDetail)
� OrderNumber=Or2 �Or2←OrderNumber (Commission)))

Algebraic optimization:

ΠClient (ΠOrdNumber (σProdNumber=’3478’ (OrderDetail) � OrderNumber=Or1

(ΠOr1 (σSeller=’White’ (�Or1←OrderNumber (Commission)))

� OrderNumber=Or2 (ΠOr2,Client (�Or2←OrderNumber (Order)))

Let T1= σProdNumber=’3478’ (OrderDetail)

CARD(T1)=0,25 SIZE(T1)=15

Let T2 = (ΠOrderNumber (σSeller=’White’ (Commission))

CARD(T2)=200 SIZE(T2)=5

Let T3 = ΠOrdNumber (T1 � T2)

005,0
10000

1
20025,0)(3 =⋅⋅=TCARD

SIZE(T3)=5

Let T4= ΠOrderNumber, Client (Order)

CARD(T4)=10000 SIZE(T4)=35

Let T5= ΠClient (T3 � T4)

005,0
10000

1
10000005,0)(5 =⋅⋅=TCARD

SIZE(T5)=30

Note that the values CARD(Ti) could be also smaller than 1: CARD is only a statistic value.

Exercise 9.15

List the conditions (dimension of the tables, presence of indexes or sequential organization or of
hashing) that make the join operation more or less convenient using the nested-loop, merge scan and
hash methods. For some of these conditions, suggest cost formulas that take into account the number
of input/output operations as a function of the average cost of the access operations involved (scans,
ordering, index-based accesses).

Sol:

Dimension of the tables: if we are in a situation such that a table is very bigger than the other, it may
be a good solution to make a nested-join using the greater table as external and the other table as
internal. If the tables have the same size, the nested-join is convenient in presence of indexes or
hashing in one of the tables. Otherwise is better to choice a merge-scan.

Hashing: the presence of a hashing function may suggest a hash-join or a nested loop. The choice
depends from the size of the tables and the number of partitions produced by the hashing function.

Sequential structure: naturally, if the two tables have a sequential structure on the join attribute, the
best choice is a merge-scan. If only a table has a sequential structure, the merge scan may be still a
good choice if there are not other particular conditions (indexes, hashing).

Indexes: the presence of indexes in general suggests a nested-loop. However, if the table with the
index is very small, or if the index is sparse, it could be better to not use the index and make a
complete scan.

The cost of a nested loop join without indexes may be expressed as:

CNL=scan(T1) + T1 (scan (T2))

Where T1 and T2 are the number of tuples of the two tables, and scan(T) is the average cost of a scan
operation

If there is a index on table 2

CNL=scan(T1) + T1 (index (T2))

A merge scan of non-sequential structures have a cost :

CMS= order(T1) + order(T2) + scan(T1) + scan(T2)

